

CAN 300 PRO – CANopen® Slave
CAN Communication Modules for S7-300 as CANopen® Slave

Manual
Edition 3 / 22.12.2011

Systeme Helmholz GmbH | Hannberger Weg 2 | D-91091 Großenseebach
Phone +49 9135 7380-0 | Fax +49 9135 7380-110 | info@helmholz.de | www.helmholz.com

All rights are reserved, including those of translation, reprinting,
and reproduction of this manual, or parts thereof. No part of this
manual may be reproduced, processed, copied, or transmitted in
any way whatsoever (photocopy, microfilm, or other method)
without the express written permission of Systeme Helmholz
GmbH, not even for use as training material, or using electronic
systems. All rights reserved in the case of a patent grant or
registration of a utility model or design.

Copyright © 2011 by

Systeme Helmholz GmbH

Hannberger Weg 2, 91091 Grossenseebach, Germany

Note:

We have checked the content of this manual for conformity with
the hardware and software described. Nevertheless, because
deviations cannot be ruled out, we cannot accept any liability for
complete conformity. The information in this manual is regularly
updated. When using purchased products, please heed the latest
version of the manual, which can be viewed in the Internet at
www.helmholz.de, from where it can also be downloaded.

Our customers are important to us. We are always glad to receive
suggestions for improvement and ideas.

S7-300, Step and SIMATIC are registered trademarks of SIEMENS AG

http://www.helmholz.de/

Revision history of this document:

Edition Date Revision
1 16.06.2009 1st version
2 18.08.2010 Handling blocks modified; BUSY included

3 22.12.2011 Error codes completed and further small corrections

Contents

1 Overview 7

1.1 General 7

1.2 Connections 7

1.3 LED displays 7

1.4 DIP switch 8

2 CANopen® Slave Function 9

2.1 Objects 9

2.2 Node addresses 9

2.3 Network management 10

2.4 Emergencies 10

2.5 Service data (SDO) 10

2.6 Process data (PDO) 10

3 Configuration in the PLC 11

4 Configuring the CAN 300 PRO Module 13

4.1 Transferring the CANopen® Slave operating system 13

4.2 Transferring the slave definition file 13

4.3 Diagnostics 14

5 Programming in the PLC 15

5.1 Process image in the PLC 15
5.1.1 Byte 0: Module status 15
5.1.2 Byte 1: Error status (EFLG) of the CAN controller 16
5.1.3 Byte 2: FIFO status bits 16
5.1.4 Byte 3/4: CAN controller Tx/Rx error counter 16
5.1.5 Byte 5: CANopen® Slave status 17
5.1.6 Byte 6+7: Status of Heartbeat Consumer 1+2 17
5.1.7 Byte 8: Active node ID 17

5.2 Data handling blocks 18
5.2.1 SDO data block 18
5.2.2 FB 90 Get SDO Block 20
5.2.3 FB 91 Send SDO Block 20
5.2.4 FB 92 SDO Write 21

CAN 300 PRO – CANopen® Slave 5

5.2.5 FB 93 SDO Read 22
5.2.6 FB 94 Send Emergency 23
5.2.7 Parameter STAT 23

5.3 Abort codes 24

5.4 Error codes of the FBs 24

6 CANopen® Protocol 25

6.1 General 25

6.2 Objects 25

6.3 Functions 26

6.4 Network management 27

7 Appendix 29

7.1 Object directory 29
7.1.1 System objects (1000h - 1FFFh) 29
7.1.2 Application objects (6000h – 6FFFh) 30
7.1.3 Manufacturer-specific objects (2000h – 3FFFh) 30

7.2 Further Documentation 31

 CAN 300 PRO – CANopen® Slave 6

1 Overview

1.1 General

The CAN 300 PRO module is intended for use in Siemens S7-300
programmable controllers. The CAN 300 PRO module is used to
connect the programmable controller to the CAN bus.

Besides applications as the CANopen® Master or for Layer 2
communication, the CAN 300 PRO can also be used to integrate
the S7-300 PLC as a CANopen® Slave in a CANopen® network.

The CAN 300 PRO module can operate as a CANopen® Slave with
the necessary data handling blocks and after installation of the
CANopen® Slave firmware and a slave definition file.

This manual describes the module in its function as a CANopen®
Slave. It is intended to be used in conjunction with the manual
for the CAN 300 PRO module.

1.2 Connections

The CAN 300 PRO module features a 9-way SubD connector
behind the hinged front cover for the CAN bus and a USB
connector for configuration and diagnostics.

Pin assignment:

Pin SUBD connector CAN
1 -
2 CAN Low
3 CAN GND
4 -
5 -
6 -
7 CAN High
8 -
9 -

i
A 24V power supply is
not applied to the CAN
bus connector.

1.3 LED displays

The LEDs on the front of the module inform you about its
operating state.

LED “SF” (orange):

System error: Shows a slave definition file
error.

LED “BF” (red):

This LED indicates a CAN error. A CAN
error has occurred if the error counters are
not zero and the CAN status is not “OK,”
or a CAN FIFO overflow has occurred.
You can obtain further information in
debug mode of the CANParam software (see also Section 4.3).

CAN 300 PRO – CANopen® Slave 7

LED “RX” (green):

CAN bus reception active: Indicates correct reception of a CAN
frame.

LED “TX” (orange):

CAN bus transmission active: Indicates correct transmission of a
CAN frame.

LED “CPU” (orange):

Data transmission to the PLC active: Indicates transmission of a
frame or command on the backplane bus (between the S7-CPU
and the module).

LED “ON” (green):

A continuous light indicates that the module is operating as a
CANopen® Slave in “Operational” mode. Slow flashing indicates
that the module is in the “Preoperational” or “Stopped” state.

1.4 DIP switch

The 10-way DIP switch on the housing
front is provided to set the CAN baudrate
and define the node address.

26 + 64
25 + 32
24 + 16
23 + 8
22 + 4
21 + 2

Address

20 + 1
22 + 4
21 + 2

Baud

20 + 1

Baudrates:

0 1 2 3 4 5 6 7
10K 50K 100K 125K 250K 500K 800K 1M

 CAN 300 PRO – CANopen® Slave 8

2 CANopen® Slave Function

2.1 Objects

The interface for all information of a CANopen® Slave is the
“Object Dictionary.” The objects of the Object Dictionary contain
all the information about the status of the slave and all process
values to be exchanged with the CAN bus master or with other
slaves (IO values, actual values, setpoint values, error states, etc.).

PLC Program on Module Firmware

CAN Bus

The objects (1000...1FFF) are implemented for the basic setting of
the CANopen® Slave. These objects distinguish the CANopen®
Slave from the CANopen® Master and contain all status
information.

Objects 6000h…9FFFh are reserved for process information when
standard CANopen® profiles are used.

Objects 2000h…3FFFh can be defined by the manufacturer.

The object table is located on the module and is exchanged with
the PLC by the data handling blocks. The objects are defined by
the slave definition file which is imported into the module

2.2 Node addresses

Every CANopen® Slave must have node address. The node address
can be between 1 and 127 and can be set in the slave definition
file or using the DIP switch.

CAN 300 PRO – CANopen® Slave 9

2.3 Network management

The CANopen® Slave data handling supports BootUp messages,
heartbeat, and node guarding.

The objects 100Ch (“GuardTime”) and 100Dh (“LifetimeFactor”)
are used for monitoring in nodeguarding. If the set time expires,
the CANopen® Slave automatically assumes the “Preoperational"
state.

Heartbeat supports transmission of the slave heartbeat (time in
object 1017h “Producer Heartbeat Time“), as well as maximum 2
consumer heartbeats (object 1016h subindex 1 und 2) for
monitoring received heartbeats.

For a more detailed description of the CANopen® frames please
see Section 6.

2.4 Emergencies

Transmission of emergency messages and management of the
current error state (objects 1001h and 1003h) are supported.

2.5 Service data (SDO)

Reading and writing of SDOs (1-4 bytes) is supported. The SDOs
can be provided with read or read/write rights.

Reading and writing SDOs of more than 4 bytes (segmented
transfer) is also supported.

2.6 Process data (PDO)

CANopen® Slave data handling supports up to 4 send and
transmit PDOs (RPDO1-4, TPDO1-4). The COB IDs of the PDOs
are permanently written in the data handling blocks and cannot
be changed.

TPDO1: 180h+node ID RPDO1: 200h+node ID
TPDO2: 280h+node ID RPDO2: 300h+node ID
TPDO3: 380h+node ID RPDO3: 400h+node ID
TPDO3: 480h+node ID RPDO3: 500h+node ID

The PDOs can be mapped via the usual objects 1600h ff. and
1A00h ff.

The following transmission types are available for TPDOs (objects
1800h ff.):

Transmit after x SYNC frames: 1-240

Transmit only after request (RTR): 252, 253

Transmit after change 254, 255

RPDO values are applied as soon as they are received.

 CAN 300 PRO – CANopen® Slave 10

3 Configuration in the PLC
The CAN 300 PRO module is configured as the CP 340
communication module in the programming software of the PLC.

When the CAN 300
PRO module is used in
an ET200M system,
noticeably poorer
performance must be
expected.

The module can be used wherever a CP module is allowed, i.e.
also in the expansion unit after an interface module.

CAN 300 PRO – CANopen® Slave 11

In parameterization of the module, only the range of I/O
addresses is relevant. All other settings have no effect on the
module.

The I/O addresses
should not be in the
cyclic process image!

Only the input image is used in the data handling blocks; the
output image has no relevance to the function.

Accesses to the input image can only be performed with the I/O
direct access commands: L PEB, L PEW, L PED.

In the case of the CPU 318, the I/O addresses must be outside the
cyclic process image.

 CAN 300 PRO – CANopen® Slave 12

4 Configuring the CAN 300 PRO Module

4.1 Transferring the CANopen® Slave operating system

The CAN modules are configured on the PC with the “CANParam
V4.1x” and newer software. The CAN 300 PRO module is supplied
with the operating system for a CANopen® Master. The latest
CANopen® Slave firmware must be installed on the module before
initial start-up

The function “Firmware Update” in menu “Online” provided in
the CANParam software can be used for this. When updating
starts, the latest slave firmware must be selected.

4.2 Transferring the slave definition file

In menu “Online,” the slave definition file for the module can be
sent with the “Send Project from File” function.

The slave definition file is a text file with the extension “PAR”.
This file describes the structure and basic state of the slave with
all its SDOs and PDOs.

A slave definition file is supplied for the DS 401 CANopen®
profile. Any number of definition files can be created for other
CANopen® applications; please consult Systeme Helmholz Support
for help.

CAN 300 PRO – CANopen® Slave 13

4.3 Diagnostics

The CANopen® Debug dialog box provides the following
information:

Version Version number of the operating system

Baudrate Active CAN baud rate

Controller status Content of the CAN status register:
!

Node status should
always be “OK” to
ensure fault-free CAN
data transmission.

Error register Content of the CAN error register EFLG
(Sec. 5.1.2)

Node status Content of the CAN status register (see
above):”OK,” “Warning,” “Passive,”
“Bus Off”

Rx error counter Error counter CAN reception

Tx error counter Error counter CAN transmission

Slave information:

Node ID Currently valid node ID of slave

Slave status 00 = Bootup
04 = Stop
05 = Operational
7F = Preoperational

Heartbeat info:

The status of the monitored slave is displayed here.

 CAN 300 PRO – CANopen® Slave 14

5 Programming in the PLC
The CANopen® Slave is programmed in the PLC using data
handling blocks and information from the process image of the
module.

5.1 Process image in the PLC

The CAN 300 PRO module occupies 16 bytes in the input and
output process image. The content of the output process image is
not used.

The content of the input process image can be used for
information purposes by the user in the application.

Byte Meaning

0 Module status generally, CAN group error display

1 CAN controller status (register of the CAN controller)

2 FIFO status bits (send & receive)

3 CAN controller: TX error counter

4 CAN controller: RX error counter

5 CANopen® slave status (0, 4, 5, 0x7f)

6 Status of Heartbeat Consumer 1

7 Status of Heartbeat Consumer 2

8 Active node ID of slave

9…15 used internally

Accesses to the input image can only be performed with the I/O
direct access commands: L PEB, L PEW, L PED.

5.1.1 Byte 0: Module status
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
CAN

controller
group error

0 Module is
CAN 300 PRO

Slave

0 0 0 0 Module
parameterized
and running

Bit 0: The CAN 300 PRO module has processed the configuration
and is ready for operation.

Bit 5: This bit is always 1 in order to detect the CAN 300 PRO
Slave.

Bit 7: Group error bit for errors on the CAN controller, more
precise information about the cause of error can be found in byte
1.

CAN 300 PRO – CANopen® Slave 15

5.1.2 Byte 1: Error status (EFLG) of the CAN controller

5.1.3 Byte 2: FIFO status bits
Bit 7 Bit 6 Bit 5 Bit 4

Send-FIFO (high)
half full

Send-FIFO
(high or low)

overflow

Send-FIFO (low)
half full

Send-FIFOs
(high & low)

completely empty

Bit 3 Bit 2 Bit 1 Bit 0
Receive-FIFO

(high) half full
Receive-FIFO
(high or low)

overflow

Receive-FIFO (low)
half full

Receive-FIFOs
(high & low)

completely empty

5.1.4 Byte 3/4: CAN controller Tx/Rx error counter
The error counter is incremented on every CAN frame transmitted
or received with an error. If a CAN frame has been correctly
transmitted, the error counter is decremented again. If the
counter is greater than 96, the CAN controller goes into
“warning” mode (see 5.1.2). If the error counter exceeds 127, the
CAN controller goes into “Error Passive.”

 CAN 300 PRO – CANopen® Slave 16

5.1.5 Byte 5: CANopen® Slave status
This byte indicates the current state of the CANopen® Slave state
machine.

0 = Bootup
4 = Stop
5 = Operational
7F = Preoperational

5.1.6 Byte 6+7: Status of Heartbeat Consumer 1+2
This byte indicates the current status of devices monitored by the
Consumer Heartbeat:

0 = Bootup
4 = Stop
5 = Operational
7E = unknown / not available
7F = Preoperational

5.1.7 Byte 8: Active node ID
This byte indicates the active node ID of the slave.

CAN 300 PRO – CANopen® Slave 17

5.2 Data handling blocks

The CANopen® Slave is programmed in the PLC with the
following data handling blocks:

FB 90 Get SDO Block Fetch SDO data into the PLC

FB 91 Send SDO Block Send SDO data to the module

FB 92 SDO Write Write an SDO

FB 93 SDO Read Read out an SDO

FB 94 Send Emergency Send an emergency message

5.2.1 SDO data block
The current data of all defined SDOs are kept in the CAN 300 PRO
module. To be able to work with these data in the PLC, they are
copied from the module into data block SDO DB at the beginning
of the cycle with function block FB 90.

A fixed assignment between the SDO and the memory location in
the SDO data block is defined in the slave definition file.

 CAN 300 PRO – CANopen® Slave 18

The data of the SDOs can now be processed and modified in the
PLC cycle. At the end of the PLC cycle the entire contents of the
SDO DB are transferred back to the module with FB 91.

Write access to SDOs
via the CAN bus have
priority!

If in the meantime the CAN bus has written to the SDO, this has
priority over the changes in the PLC.

To keep data block to a manageable size and thus limit the
transmission time between the PLC and the module, not all
defined SDOs have to be copied.

Only those SDOs that are actually needed for cyclic operation are
“mapped” to the SDO data block. All other SDOs can be read and
written to via function blocks FB 92 and FB 93 if this is done just
once or rarely.

CAN 300 PRO – CANopen® Slave 19

5.2.2 FB 90 Get SDO Block
The function block Get SDO Block (FB90) transfers the latest
status of the SDO table to the PLC and stores those data in any
data block.

The FB should be called at the beginning of the PLC cycle.

Parameter Direction Type Example
Base IN INT 256
SDO_Block IN ANY P#DB10.DBX0.0 BYTE 100
STAT OUT WORD MW 10
Err OUT BOOL M 94.7
RetVal OUT INT MW12
Busy IN_OUT BOOL
Lock IN_OUT BOOL

Base Address of the CAN 300 PRO module
SDO_Block ANY pointer to the SDO data block
STAT Status of the module, see Section 5.2.7
Err Error bit is 0 on successful implementation
RetVal Error number, see Section 5.4
Busy/Lock reserved for ET200M applications

5.2.3 FB 91 Send SDO Block
The function block Send SDO Block (FB91) sends the latest status
of the SDO table from the SDO data block to the module.

The FB should be called at the end of the PLC cycle.

Parameter Direction Type Example
Base IN INT 256
SDO_Block IN ANY P#DB10.DBX0.0 BYTE 100
STAT OUT WORD MW 10
Err OUT BOOL M 95.7
RetVal OUT INT MW14
Busy IN_OUT BOOL
Lock IN_OUT BOOL

Base Address of the CAN 300 PRO module
SDO_Block ANY pointer to the SDO data block
STAT Status of the module, see Section 5.2.7
Err Error bit is 0 on successful implementation
RetVal Error number, see Section 5.4
Busy/Lock reserved for ET200M applications

 CAN 300 PRO – CANopen® Slave 20

5.2.4 FB 92 SDO Write
The function block SDO Write (FB 92) writes one SDO value to
the module.

Parameter Direction Type Example
Base IN INT 256
Index IN WORD W#16#2001
Subindex IN BYTE B#16#0
SDO_Data IN DWORD MD 30
SDO_Len IN BYTE MB 34
RetVal OUT INT MW 35
Activate IN_OUT Bool M 39.0
Busy IN_OUT Bool M 39.1
Err IN_OUT Bool M 39.2
Done IN_OUT Bool M 39.3

Base Address of the CAN 300 PRO module
Index SDO index
Subindex SDO subindex
SDO_Data Data for the SDO (right justified)
SDO_Len Size of the SDO (1, 2, 4 bytes)
RetVal Error number, see Section 5.4
Activate activate new SDO write job
Busy SDO job is running
Err SDO job finished with error
Done SDO job finished without error
The value of the SDO must be right-justified in the double word
irrespective of the data length.

Application example:

 CALL FB 92 , DB92
 Base :=256
 Index :=W#16#2001
 Subindex:=B#16#0
 SDO_Data:=MD30
 SDO_Len :=B#16#2
 RetVal :=MW35
 Activate:=M39.0
 Busy :=M39.1
 Err :=M39.2
 Done :=M39.3
 …

CAN 300 PRO – CANopen® Slave 21

5.2.5 FB 93 SDO Read
The function block SDO Read (FB 93) fetches one SDO value from
the module.

Parameter Direction Type Example
Base IN INT 256
Index IN WORD W#16#2000
Subindex IN BYTE B#16#0
RetVal OUT INT MW 25
SDO_Data IN DWORD MD 20
SDO_Len IN BYTE MB 24

Base Address of the CAN 300 PRO module
Index SDO index
Subindex SDO subindex
RetVal Error number, see Section 5.4
SDO_Data Data for the SDO (right justified)
SDO_Len Size of the SDO (1, 2, 4 bytes)
Activate Activate new SDO read job
Busy SDO job is running
Err SDO job finished with error
Done SDO job finished without error

The value is always “right-justified” in the double word and can
be further processed immediately; for 1-byte or 2-byte values the
double word is filled up with leading zeros.

Application example:

 CALL FB 93 , DB93
 Base :=256
 Index :=W#16#2000
 Subindex:=B#16#0
 RetVal :=MW25
 SDO_Data:=MD20
 SDO_Len :=MB24
 Activate:=M29.0
 Busy :=M29.1
 Err :=M29.2
 Done :=M29.3

 AN M 29.3
 JC next

 // use read value
 R M 29.3
 L MD 20
 …

next: …

 CAN 300 PRO – CANopen® Slave 22

5.2.6 FB 94 Send Emergency
The function block Emergency (FB 94) sends an Emergency frame
and enters the message in the relevant SDOs.

Parameter Direction Type Example
Base IN INT 256
Emcy_Code IN WORD W#16#1000
Emcy_State IN BYTE B#16#03
Emcy_ManuErr INT DWORD DW#16#00000000
STAT OUT WORD MW 68
Err OUT BOOL M 63.7
RetVal OUT INT MW 70

Base Address of the CAN 300 PRO module
Emcy_Code Emergency code
Emcy_State Emergency status for object 1001h
Emcy_ManuErr Emergency manufacturer error
STAT Status of the module, see Section 5.2.7
Err Error bit is 0 on successful implementation
RetVal Error number, see Section 5.4

5.2.7 Parameter STAT
The STAT parameter has the same meaning in all data handling
blocks and indicates the status of the module:

Bit 15 Bit 14 Bit 13 Bit 12
CAN controller

group error
0 Module is

CAN 300 PRO Slave
(always 1)

0

Bit 11 Bit 10 Bit 9 Bit 8
0 0 0 Module running,

read-in of the
parameters
completed

Bit 7 Bit 6 Bit 5 Bit 4
Send-FIFO (high)

half full
Send-FIFO (high or

low) overflow
Send-FIFO (low) half

full
Receive-FIFOs (high
& low) completely

empty
Bit 3 Bit 2 Bit 1 Bit 0

Receive-FIFO (high)
half full

Receive-FIFO (high
or low) overflow

Receive-FIFO (low)
half full

Receive-FIFOs (high
& low) completely

empty

The STAT parameter corresponds to the I/O input bytes 0 and 2.

CAN 300 PRO – CANopen® Slave 23

5.3 Abort codes

Code Meaning
0503 0000h ”Toggle bit” has not been alternated
0504 0000h SDO protocol ”time out ”
0504 0001h Client/server command designation not valid or unknown
0504 0005h Outside the memory
0601 0000h Access to this object is not supported
0601 0001h Attempted read access to an object that can only be written
0601 0002h Attempted write access to an object that can only be read
0602 0000h Object does not exist in the object directory
0604 0041h Object cannot be ”mapped” to a PDO
0604 0042h Size and number of ”mapped” objects exceeds the possible PDO

length
0604 0043h General parameters –incompatibility
0604 0047h General incompatibility in the device
0606 0000h Access violation due to a hardware error
0607 0010h Data type does not match, length of the service parameter does not

fit
0607 0012h Data type does not match, length of the service parameter too large
0607 0013h Data type does not match, length of the service parameter too small
0609 0011h Subindex does not exist
0609 0030h Out of value range of the parameter (only for write accesses)
0609 0031h Value of the parameter too large
0609 0032h Value of the parameter too small
0609 0036h Maximum value is smaller than the minimum value

5.4 Error codes of the FBs

The return parameter RetVal of the function blocks can contain
both function-specific errors or error numbers of the Siemens
system function blocks SFC 52, SFC 53, SFC 14 and SFC 20.

Error codes of the CAN handling:

80E1h: SDO-FBs: Data len to Null is not allowed

80E2h: SDO-FBs: Data len greater than 4 is not allowed

80F1h: Module not ready

80F2h: Data set assigned

80F7h: CANopen® Slave still in Bootup

8xF8h: SDO data block pointer: Not enough memory

80FAh: Abort code for SDO job received.

 CAN 300 PRO – CANopen® Slave 24

6 CANopen® Protocol

6.1 General

i
CIA® = CAN in
Automation e.V.,
www.can-cia.org

The CANopen® protocol is a layer 7 protocol (application layer)
based on the CAN bus (ISO 11898). Layer 1 and 2 (physical layer
and data link layer) of the CAN bus are not affected.

The CANopen® communication profiles for the various
applications are managed by the CIA.

The services elements provided by the application layer permit
implementation of an application distributed over the network.
These service elements are described in “CAN Application Layer
(CAL) for Industrial Applications.”

The 11 bit identifier and the 8 data bytes of a CAN layer 2 frame
have a fixed meaning.

Every device in a CANopen® network has a fixed node ID (module
number, 1-127).

6.2 Objects

Data exchange with a CANopen® Slave is performed either using
permanently defined service data objects (SDO) or using freely
configurable process data objects (PDO).

Each CANopen® Slave has a fixed list of SDOs that are addressed
by an object number (16 bits) and an index (8 bits).

Example: Object 1000h/ Index 0 = Device Type, 32Bit Unsigned

SDOs with a width of 8/16/32 bits can be read and written with a
CANopen® frame. SDOs that are longer are transmitted in more
than one frame. For very large volumes of data, SDO block
transmission is possible.

SDOs can be processed as soon as a CANopen® Slave is ready for
operation. For the SDOs, only the COB ID functions “SDO
request” or “SDO response” are available. The object number,
access mode, and type are stored in the first 4 bytes of the CAN
frame.

The last 4 bytes of the CAN frame then contain the value for the
SDO.

PDOs contain the “working values” of a CANopen® Slave for
cyclic process operation. Each CANopen® Slave can manage
several PDOs (normally up to 4 for transmitting and up to 4 for
receiving).

CAN 300 PRO – CANopen® Slave 25

http://www.can-cia.org/

Each of the existing PDOs has its own COB-ID. It is possible to
map any information of the CANopen® Slave to the 8 data bytes
of the frame for reading and writing. These can be both existing
SDOs and updated values of the slaves (e.g. analog value or an
input).

The PDOs are automatically mapped from most CANopen® Slaves
on startup. The assignment can be changed using certain SDOs.

6.3 Functions

The CANopen® functions are subdivided into the three basic
groups:

 Reading and writing SDO

 Reading and writing PDO

 Network management

The function code is stored in the upper 4 bits of the identifier.
Together with the node ID this makes up the COB identifier.

COB identifier (COB-ID):

It is possible to change
some COB-IDs to other
values using special
service data objects
(SDOs).
This is NOT supported
by the CANopen® slave!

10 9 8 7 6 5 4 3 2 1 0
Function Node ID

Broadcast functions:

Function Function code
(binary)

Resulting COB-ID

NMT 0000 0h
SYNC 0001 80h

TIME STAMP 0010 100h

Node functions:

i
"Tx" = is transmitted by
the slave
"Rx" = is received from
the slave

Function Function code
(binary)

Resulting COB-ID

EMERGENCY 0001 81h –FFh
PDO1 (tx) 0011 181h – 1FFh
PDO1 (rx) 0100 201h – 27Fh
PDO2 (tx) 0101 281h – 2FFh
PDO2 (rx) 0110 301h – 37Fh
PDO3 (tx) 0111 381h – 3FFh
PDO3 (rx) 1000 401h – 47Fh
PDO4 (tx) 1001 481h – 4FFh
PDO4 (rx) 1010 501h – 57Fh
SDO (tx) 1011 581h – 5FFh
SDO (rx) 1100 601h – 67Fh

NMT Error Control 1110 701h – 77Fh

 CAN 300 PRO – CANopen® Slave 26

6.4 Network management

SYNC:
The SYNC frame is a cyclic “broadcast” frame and sets the basic
bus clock. To ensure isosynchronism, the SYNC frame has a high
priority.

COB-ID: 80h

Time Stamp:
The time stamp frame is a cyclic “broadcast” frame and provides
the system time. The time stamp frame is usually transmitted
directly after a SYNC frame and then provides the system time of
the SYNC frame.

To ensure a precise transmission, the time stamp frame has a high
priority.

COB-ID: 100h

Nodeguarding:
With the nodeguarding function, the master monitors the
CANopen® Slave modules by transmitting frames cyclically to
each slave. Each CANopen® Slave must respond to the
nodeguarding message frame with a status frame.

The control can detect failure of a CANopen® Slave using
nodeguarding.

COB-ID: 700h + node ID +RTR

Response: COB-ID: 700h + node ID + 1 byte data: Status

CAN 300 PRO – CANopen® Slave 27

Lifeguarding:
In lifeguarding, each CANopen® Slave continuously monitors
whether the master is performing nodeguarding once it has been
started within certain time limits.

If the nodeguarding frame of the master fails, the distributed I/O
module can detect that using lifeguarding and, for example, put
all outputs into the safe state.

Heartbeat:
Heartbeat monitoring is equivalent to nodeguarding although no
request frames are generated by CANopen® master. The heartbeat
frame is transmitted automatically by the node and can be
evaluated in the master.

Emergency message:
If a fault occurs on a CANopen® Slave, it sends an emergency
message to the bus.

COB-ID: 80h + node ID]

All stations can perform an emergency stop on receiving an
emergency frame, for example.

BootUp message:
CANopen® Slaves generate a BootUp message after switch-on that
the master can recognize to initialize this new station.

COB-ID: 700h + node ID + 1 byte data: 00h

 CAN 300 PRO – CANopen® Slave 28

7 Appendix

7.1 Object directory

An overview of the implemented objects of the CANopen® Slave
are given below.

The system objects are always available. All other objects are
created by the slave definition file when it is imported into the
module.

7.1.1 System objects (1000h - 1FFFh)

Object Description Value range Info
1000 Device type UNSIGNED32 Profile 401
1001 Error register UNSIGNED8 Current error status
1003 Predefined error field ARRAY

/0 UNSIGNED8 Number of entries
/1 UNSIGNED32 Current error

1004 PDOs supported UNSIGNED32 4 send and 4 receive PDOs
1005 COB-ID SYNC message UNSIGNED32 ID for SYNC messages
1008 Manufacturer device name STRING
1009 Hardware version STRING
100A Software version STRING
100B Active node address STRING
100C Guard time UNSIGNED16 Nodeguarding monitoring time
100D Lifetime factor UNSIGNED8 Lifetime factor for nodeguarding
1012 COB ID timestamp UNSIGNED32 COB ID for timestamp frames
1014 COB ID Emergency UNSIGNED32 COB ID for emergency
1016 Consumer heartbeat UNSIGNED8

/0 Consumer heartbeat 1 UNSIGNED32
/1 Consumer heartbeat 2 UNSIGNED32

1017 Heartbeat time UNSIGNED16 Time of send heartbeat (500ms)
1018 Identity RECORD

/0 UNSIGNED8 Number of entries
/1 UNSIGNED32 Vendor ID
/2 UNSIGNED32 Product ID
/3 UNSIGNED32 Release
/4 UNSIGNED32 Serial number

1029 Error behavior ARRAY
/0 UNSIGNED8 Number of entries
/1 UNSIGNED8
/2 UNSIGNED8

1400 RPDO1 Comm Param ARRAY
/0 UNSIGNED8 Number of entries
/1 UNSIGNED32 COB ID
/2 UNSIGNED8 Transmission type (FFh=event-triggered)

1401 RPDO2 Comm Param ARRAY
… …

1402 RPDO3 Comm Param ARRAY
… …

1403 RPDO4 Comm Param ARRAY
… …

1600 RPDO1 Mapping ARRAY
/0 UNSIGNED8 Number of entries
/1 UNSIGNED32 1. Mapping
/2 UNSIGNED32 2. Mapping
/3 UNSIGNED32 3. Mapping
/4 UNSIGNED32 4. Mapping
/5 UNSIGNED32 5. Mapping

CAN 300 PRO – CANopen® Slave 29

/6 UNSIGNED32 6. Mapping
/7 UNSIGNED32 7. Mapping
/8 UNSIGNED32 8. Mapping

1601 RPDO2 Mapping ARRAY
 …

1602 RPDO3 Mapping ARRAY
 …

1603 RPDO4 Mapping ARRAY
 …

1800 TPDO1 Comm Param ARRAY
/0 UNSIGNED8 Number of entries
/1 UNSIGNED32 COB ID
/2 UNSIGNED8 Transmission type (FFh=event-triggered)

1801 TPDO2 Comm Param ARRAY
… …

1802 TPDO3 Comm Param ARRAY
… …

1803 TPDO4 Comm Param ARRAY
… …

1A00 TPDO1 Mapping ARRAY
/0 UNSIGNED8 Number of entries
/1 UNSIGNED32 1. Mapping
/2 UNSIGNED32 2. Mapping
/3 UNSIGNED32 3. Mapping
/4 UNSIGNED32 4. Mapping
/5 UNSIGNED32 5. Mapping
/6 UNSIGNED32 6. Mapping
/7 UNSIGNED32 7. Mapping
/8 UNSIGNED32 8. Mapping

1A01 TPDO2 Mapping ARRAY
 …

1A02 TPDO3 Mapping ARRAY
 …

1A03 TPDO4 Mapping ARRAY
 …

7.1.2 Application objects (6000h – 6FFFh)
The application objects are adapted to customer requirements.

Standard objects for an IO slave acc. to profile DS401:

SDO 6000h, subindex 1-16, unsigned8: 16-byte digital inputs

SDO 6200h, subindex 1-16, unsigned8: 16-byte digital outputs

SDO 6401h, subindex 1-8, unsigned16: 8-word analog inputs

SDO 6411h, subindex 1-8, unsigned16: 8-word analog outputs

7.1.3 Manufacturer-specific objects (2000h – 3FFFh)
These objects are created on request customer specifically.

 CAN 300 PRO – CANopen® Slave 30

7.2 Further Documentation

Internet: www.can-cia.org

CAN Specification 2.0, Part A & Part B

CAN 300 PRO – CANopen® Slave 31

http://www.can-cia.org/

 CAN 300 PRO – CANopen® Slave 32

Notes

	1 Overview
	1.1 General
	1.2 Connections
	1.3 LED displays
	1.4 DIP switch

	2 CANopen® Slave Function
	2.1 Objects
	2.2 Node addresses
	2.3 Network management
	2.4 Emergencies
	2.5 Service data (SDO)
	2.6 Process data (PDO)

	3 Configuration in the PLC
	4 Configuring the CAN 300 PRO Module
	4.1 Transferring the CANopen® Slave operating system
	4.2 Transferring the slave definition file
	4.3 Diagnostics

	5 Programming in the PLC
	5.1 Process image in the PLC
	5.1.1 Byte 0: Module status
	5.1.2 Byte 1: Error status (EFLG) of the CAN controller
	5.1.3 Byte 2: FIFO status bits
	5.1.4 Byte 3/4: CAN controller Tx/Rx error counter
	5.1.5 Byte 5: CANopen® Slave status
	5.1.6 Byte 6+7: Status of Heartbeat Consumer 1+2
	5.1.7 Byte 8: Active node ID

	5.2 Data handling blocks
	5.2.1 SDO data block
	5.2.2 FB 90 Get SDO Block
	5.2.3 FB 91 Send SDO Block
	5.2.4 FB 92 SDO Write
	5.2.5 FB 93 SDO Read
	5.2.6 FB 94 Send Emergency
	5.2.7 Parameter STAT

	5.3 Abort codes
	5.4 Error codes of the FBs

	6 CANopen® Protocol
	General
	6.2 Objects
	6.3 Functions
	6.4 Network management

	7 Appendix
	7.1 Object directory
	7.1.1 System objects (1000h - 1FFFh)
	7.1.2 Application objects (6000h – 6FFFh)
	7.1.3 Manufacturer-specific objects (2000h – 3FFFh)

	7.2 Further Documentation

