

DEA 300
Digital Input and Output Modules
700-321-1BL00/-1BH02/-1BH50/-7BH01/-1EL00/-1FH00
700-322-1BL00/-1BH01/-1BF01
700-322-1HF10/-1HF20/-1HF30/-1HF01/-1HH01
700-323-1BL00/-BH01
700-370-0AA01/-0AL01

Manual

Version 12: 05-12-2016
Manual Order Number: 900-321-1GB11/en

All rights are reserved, including those of translation, reprinting, and reproduction of this manual, or parts thereof. No part of this manual may be reproduced, processed, copied, or transmitted in any way whatsoever (photocopy, microfilm, or other method) without the express written permission of Helmholz GmbH \& Co. KG, not even for use as training material, or using electronic systems. All rights reserved in the case of a patent grant or registration of a utility model or design.

Copyright ${ }^{\circ} 2011$ by
Helmholz GmbH \& Co. KG
Hannberger Weg 2, 91091 Großenseebach, Germany

Note:

We have checked the content of this manual for conformity with the hardware and software described. Nevertheless, because deviations cannot be ruled out, we cannot accept any liability for complete conformity. The information in this manual is regularly updated. When using purchased products, please heed the latest version of the manual, which can be viewed in the Internet at www.helmholz.com, from where it can also be downloaded.

Our customers are important to us. We are always glad to receive suggestions for improvement and ideas.

Revision history of this document:

Edition	Date	Revision
10	12.12 .2011	New module 700-332-1HF30 DO 16 x Rel. DC60V/0.5 A bistable added. Updated version.
11	08.11 .2013	Module 700-332-1HF30 DO 16 x Rel. DC60V/0.5 A bistable chapter 4.5.5.1 Parameterising and 4.5.5.2 Aktivating the relays added. Updated version.
12	5.12 .16	Hazloc chapter deleted Change of company name

Contents

1 Safety Information 7
1.1 General 7
1.2 Restriction of access 8
1.3 Information for the user 8
1.4 Use as intended 8
1.5 Avoiding use not as intended! 8
1.6 Installation and mounting 9
2 Mounting 10
2.1 Foreword 10
2.2 Restriction of access 10
2.3 Planning assembly 10
2.4 Minimum clearance 11
2.5 Mounting of the modules on the DIN rail 11
3 Wiring 13
3.1 Protection from external electric interference 13
3.2 Current consumption and power loss 13
3.3 Mounting isolated modules 13
3.4 Outdoor cable laying 14
3.5 Protection from inductive overvoltages 14
3.6 Wiring the DEA 300 front connector 16
3.6.1 Wire 40-way connector with screw-type terminal 16
3.6.2 Wire 20-way connector with screw-type terminal 17
3.6.3 Wire 40 -way connector with spring contacts 19
3.6.4 Wire 20-way connector with spring contacts 20
3.6.5 Wire 40-way connector with EasyConnect clamp connection technique 21
4 Digital Modules 22
4.1 Foreword 22
4.2 Digital input modules 22
4.2.1 DEA DI $32 \times 24 \mathrm{~V}$ DC 22
4.2.2 DEA DI $16 \times 24 \mathrm{~V}$ DC 24
4.2.3 DEA DI $16 \times 24 \mathrm{~V}$ DC Source Input 25
4.2.4 DEA DI 16×24 V DC with Hardware and Diagnostic Interrupts 26
4.2.5 DEA DI $32 \times 120 \mathrm{~V} \mathrm{AC}$ 36
4.2.6 DEA DI $16 \times 120 / 230 \mathrm{~V}$ AC 39
4.3 Digital output modules 42
4.3.1 DEA DO $32 \times 24 \mathrm{~V}$ DC/0.5 A 42
4.3.2 DEA DO $16 \times 24 \mathrm{~V}$ DC/0.5 A 44
4.3.3 DEA DO $8 \times 24 \mathrm{~V}$ DC/2.0 A 46
4.4 Digital input/output modules 48
4.4.1 DEA DI 16/DO $16 \times 24 \mathrm{~V}$ DC/0.5 A 48
4.4.2 DEA DI 8/DO $8 \times 24 \mathrm{~V}$ DC/0.5 A 50
4.5 Relay output modules 52
4.5.1 DEA DO $8 \times$ Rel. V AC 230/5 A 52
4.5.2 DEA DO $8 \times$ Rel. $230 \mathrm{~V} \mathrm{AC/5} \mathrm{~A} \mathrm{with} \mathrm{suppressor}$ 56
4.5.3 DEA DO $16 \times$ Rel. 230 V AC/2 A 60
4.5.4 DEA DO $8 \times$ Rel. $230 \mathrm{~V} \mathrm{AC/2} \mathrm{~A}$ 63
4.5.5 DEA DO $16 \times$ Rel. DC 60 V/0.5 A bistable 66
4.6 Other modules 72
4.6.1 Dummy Module DM 370 72
5 Ordering data 76

1 Safety Information

Please observe the safety information given for your own and other people's safety. The safety information indicates possible hazards and provides information about how you can avoid hazards.

The following symbols are used in this manual.

Caution, indicates hazards and sources of error
f
gives information
今
hazard, general or specific

danger of electric shock

1.1 General

The DEA 300 Digital Input and Output Modules are only used as parts of a complete system.

!

The operator of a machine system is responsible for observing all safety and accident prevention regulations applicable to the application in question.

During configuration, safety and accident prevention rules specific to the application must be observed.

Emergency OFF facilities according to EN 60204 / IEC 204 must remain active in all modes of the machine system. The system must not enter an undefined restart.

Faults occurring in the machine system that can cause damage to property or injury to persons must be prevented by additional external equipment. Such equipment must also ensure entry into a safe state in the event of a fault. Such equipment includes, for example, electromechanical safety buttons, mechanical interlocks, etc. (see EN 954-1, risk estimation).

Never execute or initiate safety-related functions using the modules.

Make sure in the software that uncontrolled restarts cannot occur.

Only authorized persons must have access to the modules!

During configuration it is imperative to observe the safety and accident prevention rules applicable in the particular application.

Uncontrolled restarts must be prevented in the software.

1.2 Restriction of access

The modules are open equipment and must only be installed in electrical equipment rooms, cabinets, or housings. Access to the electrical equipment rooms, barriers, or housings must only be possible using a tool or key and only permitted to personnel having received instruction or authorization. See also Chapter 2.

1.3 Information for the user

This manual is addressed to anyone wishing to configure, use, or install the DEA 300 modules.

It is intended to show the user how to operate the DEA 300 and explain the signaling functions. It provides the installing technician with all the necessary data.

The DEA 300 module is exclusively for use with an S7-300 programmable controller from Siemens or with a PAS 153 PROFIBUS Slave Interface from Helmholz.

DEA 300 modules are only used as part of a complete system. For that reason, the configuring engineer, user, and installing technician must observe the standards, safety, and accident prevention rules applicable in the particular application. The operator of the automation system is responsible for observing these rules.

1.4 Use as intended

The DEA 300 modules must only be used as a communication and signaling system as described in the manual.

1.5 Avoiding use not as intended!

Safety-related functions must not be controlled using the DEA 300 modules alone. Make sure in the software that uncontrolled restarts cannot occur. The modules must only be operated in slots connected to a 5 V data bus.

4

Before you start installation work, all system components must be disconnected from thoir ๓ower source.

!

Note these instructions:

1.6 Installation and mounting

Installation and mounting must be effected in compliance with VDE 0100 IEC 364. Because it is an IP20 (OPEN type) module, you must install it in a (switching) cabinet.

During configuration, safety and accident prevention rules specific to the application must be observed.

- Use $60 / 75{ }^{\circ} \mathrm{C}$ copper wire only and use $95{ }^{\circ} \mathrm{C}$ copper wire only for model 700-321-1EL00 and 700-321-1FH00.
- Use Class 1 wire only or equivalent.
- Suitable for pollution degree 2 environment only.
- Connected to 5 V bus only.
- See manual for all input and output ratings.
- Maximum surrounding air temperature is $40^{\circ} \mathrm{C}$ or $60^{\circ} \mathrm{C}$ for following modules:

700-321-1BH02
700-321-1BL00
700-322-1BH01
700-322-1BL00
700-323-1BH01
700-323-1BL00
700-321-1EL00
700-321-1FH00)

- Date code in year and month of the manufacture on module.
- For Analog Output device 700-332-5HDxx and 700-332-5HBxx: These modules are intended to be powered by LVLC programmable controllers S 7 series from Siemens.

2 Mounting

2.1 Foreword

This section describes planning of mechanical assembly, preparation of components for mounting, and final mounting itself.

2.2 Restriction of access

The DEA 300 module must be installed according to VDE 0100 IEC 364. The modules are open equipment and must only be installed in electrical equipment rooms, cabinets, or housings. Access to the electrical equipment rooms, barriers, or housings must only be possible using a tool or key and only permitted to personnel having received instruction or authorization. See also 1.6.

2.3 Planning assembly

Permissible surrounding air temperature:

- for vertical mounting: from 0 to $+40^{\circ} \mathrm{C}$
- for horizontal mounting: from 0 to $+60^{\circ} \mathrm{C}$

2.4 Minimum clearance

Minimum clearances must be observed because

- it ensures cooling of the DEA 300 modules
- it provides space to insert and remove modules
- it provides space to route cables
- it increases the mounting height of the module rack to 185 mm , although the minimum spacing of 40 mm must still be observed
Fig. 2-2 shows the minimum spacing between the module racks and between these and any adjacent cabinet walls, equipment, cable ducts, etc. for DEA 300s mounted in several module racks.

Fig. 2-2:
Minimum clearances for mounting

Non-observance of the minimum distances can destroy the module at high surrounding air temperature!

2.5 Mounting of the modules on the DIN rail

Sectional rail 700-390-1xxxx length see chapter 5 Ordering data.
A bus connector is included with each signal module but not with the CPU. When connecting the bus connector, always start with the CPU.

Take the bus connector off the last module and insert it into the CPU. Do not plug a bus connector into the last module of the tier.

Fig. 2-3:
Plugging in bus connectors

Fig. 2-4:
Using modules

Fig. 2-5:
Screwing modules tight

Hook on the modules (1), slide them up to the left module (2), and click them downward (3).

Screw the modules on with a torque of 0.8 to 1.1 Nm .

3 Wiring

3.1 Protection from external electric interference

On all systems and plants in which the DEA 300 modules are installed, it is important to ensure that the system or plant is connected to a protective ground conductor to remove electromagnetic interference.

Makes sure that all supply, signal, and bus cables are correctly installed and that cable routing is correct.

Make sure, for all signal and bus cables, that a conductor or cable break cannot cause undefined states of the system or plant.

3.2 Current consumption and power loss

DEA 300 modules draw the power they require to operate from the backplane bus. Where required, they can be powered from an external source.

- The total current consumption of all signal modules drawn from the backplane bus must not exceed the current the CPU can supply to the backplane bus.
- The power loss of all modules used in a cabinet must not exceed the maximum cabinet power that can be dissipated.

For information about current consumption and power loss of a module, see the technical data of the module in question.

3.3 Mounting isolated modules

In an assembly containing isolated modules, the reference potentials of the control circuit (GND internal) and the external load circuit (GND external) are mutually isolated.

Isolated modules are used for DC load circuits with a separate reference potential.

Examples of load circuits with a separate reference potential:

- DC load circuits whose sensors have different reference potentials, for example, if grounded sensors are used at a great distance from the controller making equipotential bonding between them impossible.
- DC load circuits, whose plus pole ($\mathrm{L}+$) is grounded.

Fig. 3-1:
Potentials in an isolated module assembly

f

The inductor supplier will provide information about the dimensioning of overvoltage protection equipment.

3.4 Outdoor cable laying

- The same guidelines apply as for indoor cable laying.
- The cables must be laid on metal cable trays.
- Joints between cable trays must be conductively connected.
- Cable trays must be grounded.
- Adequate equipotential bonding between connected devices must also be ensured.
- Interior and exterior lightning protection must be ensured and such grounding measures must be taken as are suitable for the application in question.

3.5 Protection from inductive overvoltages

The DEA 300 digital output modules feature integrated overvoltage protection. Overvoltages arise when inductors are switched off, for example, relay solenoids and contactors.

Inductors only have to be provided with additional overvoltage protection if:

- the outputs can be switched off by additional built-in contacts, such as relay contacts.
- the inductors are not controlled by the modules.

Fig. 3-2 shows an example of an output circuit requiring additional overvoltage protection.

Fig. 3-2:
Relay contact for EMERG. OFF in the output circuit

Fig. 3-3:
Relay with snubber element

Fig. 3-4:
Relay with snubber element

DC-operated solenoids must be connected with diodes or Zener diodes.

AC-operated solenoids are operated with Varistors or RC elements.

3.6 Wiring the DEA 300 front connector

40-way front connector with screw-type terminal:
Order No 700-392-1AM01

20-way front connector with screw-type terminal:
Order No 700-392-1AJ10

40-way front connector with spring-type terminal:
Order No 700-392-1BM01

20-way front connector with spring-type terminal:
Order No 700-392-1BJ01

40-way front connector with EasyConnect ${ }^{\circledR}$:
Order No 700-392-1AM10

3.6.1 Wire 40-way connector with screw-type terminal

Technical specifications
Order number 700-392-1AM01

Number of terminals	$\mathbf{4 0}$
Terminal type	screw-type terminal
Connectable cables	flexible, fixed
Cross-section with/without end ferrules	$0,125-1,5 \mathrm{~mm}^{2}$
Strip-back length	$6-8 \mathrm{~mm}$
end ferrules	with or without
Required torque, clamp	$0,5 \mathrm{Nm}$
Required torque, screw	$0,7 \mathrm{Nm}$
Weight	120 g

Fig. 3-6:
Wiring the 40-way front connector

- With the cables brought out from the module at the bottom, start with terminal 40 or 20 and then proceed wiring alternately, in the sequence of order terminal $39,19,38,18$ etc.
- With the cables brought out from the module at the top, start with terminal 1 or 21 and then proceed wiring alternately in the sequence of order terminal $2,22,3,23$, etc. up to terminals 20 and 40.
- Close unused terminals.
- Lay the supplied strain relief around the cable loom and around the front connector.
- Screw the strain relief for the cable loom tight, press the lock of the strain relief to the left inside so that the cable space can be utilised more efficiently.

3.6.2 Wire 20-way connector with screw-type terminal

Technical specifications

Order number
700-392-1AJ10
Number of terminals
Terminal type
Connectable cables
Cross-section with/without end ferrules
Strip-back length
end ferrules
Required torque, clamp
Weight

20
screw-type terminal
flexible, fixed
$0,25-1,5 \mathrm{~mm}^{2}$
6 mm
with or without 0,5 Nm
60 g

- Open the DEA 300 modules (1).
- Snap the front connector into the signal module (2)

Fig. 3-7:
Bringing the front connector into the wiring position

CAUTION: When the power supply module and, in some cases, additionally, the load power supplies are turned on, make absolutely sure that nobody is able to come into contact with alive lines or cables.

Fig. 3-8:
Wiring the 20-way front connector

- Strip the isolation from the cables.
- When using connector sleeves, crimp the sleeves with the cables.
- Insert the supplied strain relief for the loom of cables into the front connector (0).
- With the cables brought out from the module at the bottom, start with terminal 20 and then proceed wiring in the sequence of order terminal 20, 19, etc. (1) up to terminal 1 (2). Wiring front connectors

- With the cables brought out from the module at the top, start with terminal 1 and then proceed wiring in the sequence of order terminal 1,2 , etc. up to terminal 20.
- In the case of screw-type terminals (3), screw tight also the connection screws of those screw-type terminals which are not wired.
- Tighten the strain relief for the loom of cables (4).
- Press the lock of the strain relief to the left inside so that the cable space can be utilised more efficiently.

3.6.3 Wire 40 -way connector with spring contacts

Technical specifications

Order number

Number of terminals
Terminal type
Connectable cables
Cross-section with/without end ferrules
Strip-back length
Weight

700-392-1BM01

40

spring contacts flexible, fixed $0,34-1,5 \mathrm{~mm}^{2}$ 8 mm
Approx. 70 g

Easy wiring of front connector with spring contacts: put a screwdriver (for slotted grub screws $0,6 \times 3,5$) vertically into the chamber with the unlock mechanism until mechanical stop, plug the wire into the spring contact and remove the screwdriver.
Cable routing is similar to the 40 way front connector with screw contacts.

3.6.4 Wire 20-way connector with spring contacts

Technical specifications

Order number

Number of terminals
Terminal type
Connectable cables
Cross-section with/without end ferrules
Strip-back length
Weight

700-392-1BJ01

20

spring contacts flexible, fixed $0,34-1,5 \mathrm{~mm}^{2}$ 8 mm Approx. 50 g

Easy wiring of front connector with spring contacts: put a screwdriver (for slotted grub screws $0,6 \times 3,5$) vertically into the chamber with the green unlock mechanism until mechanical stop, plug the wire into the spring contact and remove the screwdriver. Cable routing is similar to the 20 way front connector with screw contacts.

3.6.5 Wire 40-way connector with EasyConnect ${ }^{\circledR}$ clamp connection technique

Technical specifications

Order number 700-392-1AM10
Number of terminals 40
Terminal type
Connectable cables
Cross-section without end ferrules
Strip-back length
Wire end ferrules
Open terminal
Close terminal
Required torque, clamp
Required torque, screw
Weight

Spring

Flexible cables
$0.34-1 \mathrm{~mm}^{2}$
$8-10 \mathrm{~mm}$
Not required
180° turn counter clockwise
180° turn clockwise
0.15 Nm
0.7 Nm

70 g

今
Tighten terminals with fingers only, do not use a power screwdriver!

Fig 3-11:
Wiring the 40 -way front connector

The terminals are supplied closed.
The eccentric screws are marked with a beveled side. If the beveled darker side - is turned toward the terminal, the terminal opens.
Counter clockwise

- Open terminal
Clockwise
- Close terminal

The figure shows Terminals 21 and 22 open.

The eccentric screw is only used to open the terminal, it has no fixing function. Although the screw will still turn a few degrees on a closed terminal, this will not make the
 connection any more secure!

4 Digital Modules

4.1 Foreword

Different digital modules are available for connection of sensors and encoders and/or loads and actuators.

This section provides the technical data of the digital modules. It also provides information about features, exceptions, module view, and block diagrams of the digital modules.

4.2 Digital input modules

The following digital input modules are described in this section:

- 700-321-1BL00 DI 32×24 V DC
- 700-321-1BH02 DI 16×24 V DC
- 700-321-1BH50 DI $16 \times 24 \mathrm{~V}$ DC Source Input
- 700-321-7BH01 DI 16×24 V DC with Hardware and Diagnostic Interrupts
- 700-321-1EL00 DI 32×120 V AC
- 700-321-1FH00 DI $16 \times 120 / 230 \mathrm{~V} \mathrm{AC}$

4.2.1 DEA DI 32×24 V DC

Order number: 700-321-1BL00
The DI $32 \times 24 \mathrm{~V}$ DC has the following features:

- 32 inputs, isolated from the backplane bus
- Nominal input voltage 24 V DC
- Connection of 2-wire proximity switches is possible

Fig. 4-1 shows the block diagram of the DEA DI $32 \times 24 \mathrm{~V}$ DC, followed by the technical data.

Fig. 4-1:
View of module and block diagram of DI 32×24 V DC

Technical data

Order number

Number of inputs
Isolation (from backplane bus)
in groups of
Input voltage

- nominal value
- for signal "0"
- for signal "1"

Input current

- for signal "1"

Delay time
Connection of 2-wire initiator
permissible quiescent current for signal " 0 "
Cable length unshielded
Cable length shielded
Current consumption

- internal
- external

Power loss (nominal operation)

- surrounding air temperature
- temperature during transport and storage

700-321-1BL00
32
yes (via optocoupler) 16

DC 24 V
$-3 \ldots+5 \mathrm{~V}$
$+13 \ldots+30 \mathrm{~V}$
typ. 7 mA
typ. $1.2 \ldots 4.8 \mathrm{~ms}$
yes
max. 1.5 mA
max. 600 m
max. 1000 m
typ. 20 mA
-
typ. 6.8 W
$0{ }^{\circ} \mathrm{C} \ldots+60{ }^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C} \ldots+75{ }^{\circ} \mathrm{C}$
Weight
260 g
$40 \times 125 \times 117$
40-way

Fig. 4-2:
View of module and block diagram of DI $16 \times 24 V D C$

4.2.2 DEA DI $16 \times 24 \mathrm{~V}$ DC

Order number: 700-321-1BH02
The DI $16 \times 24 \mathrm{~V}$ DC has the following features:

- 16 inputs, isolated from the backplane bus
- Nominal input voltage DC 24 V
- Connection of 2-wire proximity switches is possible

Fig. $4-2$ shows the block diagram of the DEA DI $16 \times 24 \mathrm{~V}$ DC, followed by the technical data.

Technical data

Order number
700-321-1BH02

Number of inputs
16
Isolation (from backplane bus)
in groups of
yes (via optocoupler)

Input voltage

- nominal value

DC 24 V

- for signal "0"
$-3 \ldots+5 \mathrm{~V}$
- for signal "1"
$+13 \ldots+30 \mathrm{~V}$
Input current
- for signal "1"

Delay time
Connection of 2-wire initiator

- permissible quiescent current for signal "0"

Cable length unshielded
Cable length shielded
Current consumption

- internal
- external

Power loss (nominal operation)

- surrounding air temperature
- temperature during transport and storage

Weight
Dimensions W x H x D [mm]
Front connector
typ.1.2 ... 4.8 ms
yes
max. 1.5 mA
max. 600 m
max. 1000 m
typ. 20 mA max. 140 mA
typ. 3.5 W
$0^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C} \ldots+75{ }^{\circ} \mathrm{C}$

180 g
$40 \times 125 \times 117$
20-way

4.2.3 DEA DI $16 \times 24 \mathrm{~V}$ DC Source Input

Order number: 700-321-1BH50
The DI $16 \times 24 \mathrm{~V}$ DC source input has the following features:

- 16 inputs, source input, isolated in groups of 16
- 24 V DC rated input voltage
- Suitable for switches and two / three / four-wire proximity switches (BEROs)

Fig. $4-3$ shows the block diagram of the DI $16 \times 24 \mathrm{~V}$ DC (source input), followed by the technical data.

Technical data

Order number	700-321-1BH50
Number of inputs	16
Isolation (from backplane bus) in groups of	yes (via optocoupler) 16
Input voltage, reference potential L+ - nominal value - for signal "0" - for signal "1"	$\begin{aligned} & 24 \mathrm{~V} \text { DC } \\ & +30 \ldots-5 \mathrm{~V} \\ & -13 \ldots-30 \mathrm{~V} \end{aligned}$
Input current - for signal "1"	typ. 7 mA
Delay time	typ. 1,2 ... 4,8 ms
Connection of 2-wire initiator - permissible quiescent current for signal "0"	yes max. 1,5 mA
Cable length unshielded Cable length shielded	max. 600 m max. 1000 m
Current consumption - internal	typ. 10 mA
Power loss (nominal operation)	typ. 3,5 W
- surrounding air temperature - temperature during transport and storage	$\begin{aligned} & 0 \ldots+60^{\circ} \mathrm{C} \\ & -25 \ldots+75^{\circ} \mathrm{C} \end{aligned}$
Weight Dimensions W x H x D [mm] Front connector	$\begin{aligned} & 180 \mathrm{~g} \\ & 40 \mathrm{x} 125 \times 117 \\ & 20 \text {-way } \end{aligned}$

4.2.4 DEA DI 16×24 V DC with Hardware and Diagnostic Interrupts

Order number: 700-321-7BH01
The DI 16 x 24 VDC with hardware and diagnostic interrupts has the following features:

- 16 inputs, isolated in one group
- 24 VDC rated input voltage
- Input characteristic curve according to IEC 61131, Type 2
- Suitable for switches and two / three / four-wire BEROs (proximity switches)
- 2 short-circuit-proof sensor supplies for 8 channels each
- External redundant power supply possible to supply sensors
- "Sensor supply (Vs)" status display
- Group error display (SF)
- Supports the "parameter changing during the RUN" function
- Programmable diagnostics

Fig. 4-4: View of module and block diagram of DI 16×24 V DC with hardware and diagnostic interrupts

- Programmable diagnostic interrupt
- Programmable hardware interrupt
- Programmable input delays

Fig. 4-4 shows the block diagram of the DEA DI 16×24 VDC with hardware and diagnostic interrupts, followed by the technical data.

Technical data

Order number
Number of inputs
Isolation (from backplane bus)
in groups of
Supports clocked operation
Parameter changing during the RUN is possible

Behavior of the non parameterized inputs

Interrupts

- Diagnostic interrupt
- Hardware interrupt

Diagnostic functions

- Group error display
- Diagnostics information read-out

700-321-7BH0116
yes (via optocoupler) 16
no
yes
gives the last valid output value before the parameterization

Parameters can be assigned Parameters can be assigned

Parameters can be assigned Red LED (SF)
Possible

- Sensor power supplies (Vs)

Monitoring of Wire-break
Power rated voltage of the electronics and encoder L+

Sensor Power Supply Outputs

- Number of outputs
- Output voltage with load
- Output current - Rated value
- Output current - Permitted range
- Additional redundant supply
- Short-circuit protection

Input voltage

- Rated value
- For signal "1"
- For signal "0"

Input current

- At signal "1"

Input characteristic curve

Connection of Two-Wire BEROs
Permitted bias current for Signal "0"
Resistive circuit of the sensor for detecting broken wires Length of cable unshielded Length of cable shielded

Time/Frequency Internal processing time for status processing (in non synchronous operation)

- Release of process and diagnosis alarm

Input delay (EV)

- Parameters can be assigned
- Rated value

Current consumption

- internal
- From load voltage $\mathrm{L}+$ without sensor supply V_{s}

Power loss (nominal operation)

- Surrounding air temperature
- temperature during transport and storage

Weight
Dimensions W x H x D (in millimeters)
Front connector

Green LED per output
yes, at $\mathrm{I}<1 \mathrm{~mA}$
DC 24 V

2
min. L+ (-2,5 V)
120 mA
$0 \ldots 150 \mathrm{~mA}$
Permitted
Yes, electronic

DC 24 V
$-30 \ldots+5 \mathrm{~V}$
$+13 \ldots+30 \mathrm{~V}$
typ. 7 mA
According to IEC 61131, type 2

Possible
$\max .2 \mathrm{~mA}$
$10 \ldots 18 \mathrm{k} \Omega$
max. 600 m
max. 1000 m
$<2 \mu \mathrm{~s}$
yes
typ. $0,1 / 0,5 / 3 / 15 / 20 \mathrm{~ms}$
$\max .130 \mathrm{~mA}$
$\max .90 \mathrm{~mA}$
typ. 4 W
$0 \ldots+60{ }^{\circ} \mathrm{C}$
$-25 \ldots+75^{\circ} \mathrm{C}$

Fig. 4-5: Terminal assignment for redundant supply of encoders

Fig. 4-6: Terminal assignment for resistive circuit of the encoder

4.2.4.1 Parameterising the module

Use STEP 7 to parameterise the digital module for $16 \times 24 \mathrm{~V}$ DC with process and diagnostic interrupts. The parameterisation must be performed with the CPU in the STOP condition.

Once all parameters are defined, they can be loaded from the PG (programming device) into the CPU. When the mode state of the CPU changes from STOP to RUN, the parameters are transferred to the relevant digital modules.

4.2.4.2 Static and dynamic parameters

The parameters are divided into static and dynamic parameters.
The static parameters are set with the CPU in the STOP condition, as described above.

The dynamic parameters can also be modified in the currently running user program of the S 7 control via SFC. In this case, please note that after a RUN \rightarrow STOP / STOP \rightarrow RUN change of the CPU the parameters set using STEP 7 are valid again.

Parameter	Settable with	CPU Operating State
Static	PG (STEP 7 HW CONFIG)	STOP
Dynamic	PG (STEP 7 HW CONFIG)	STOP
Dynamic	SFC 55 in the user program	RUN

4.2.4.3 Terminal assignment for redundant supply of encoders

The figure below shows how encoder can additionally be supplied by means of Vs with a redundant voltage source, for example, via another module.

4.2.4.4 Terminal assignment for resistive circuit of the encoder

In order to detect a broken wire, it is necessary to wire the encoder contact with a resistor.

4.2.4.5 Parameterisable and non-parameterisable diagnostic messages

Parameterisable and non-parameterisable diagnostic messages
A distinction is made between parameterisable and nonparameterisable diagnostic messages.
Parameterisable diagnostic messages are only available if diagnosis has been enabled by way of parameterisation. The parameterisation is performed in the parameter block "Diagnosis" in STEP 7.
The non-parameterisable diagnostic messages are always provided by the digital module, irrespective of whether or not diagnostics are enabled.

Actions after a diagnostic message in STEP 7

Each diagnostic message results in the following actions:

- The diagnostic message is entered in the diagnostics for the digital module and transferred to the CPU.
- The SF LED on the digital module lights up.
- If "Enable diagnostic interrupt" has been parameterised using STEP 7, a diagnostic interrupt is triggered, and OB 82 is called.

Reading out diagnostic messages

The individual diagnostic messages can be read out in detail using SFCs in the user program.
The corresponding error causes can be displayed in the module diagnostics of STEP 7 (see STEP 7 online help).

Display of diagnostic messages via the SF LED

Errors on digital modules which are capable of performing selfdiagnostics are displayed using the SF LED (group error LED). The SF LED is lit as soon as a diagnostic message is triggered by the digital module. It goes out once all errors are rectified.

The SF LED will also light up in case of external errors (short-circuit of the encoder supply), irrespective of the operating condition of the CPU (with POWER ON).

Diagnostic messages interrupt processing by the digital modules
See Section 4.2.4.8.

4.2.4.6 Parameters of the $700-321-7 \mathrm{BH} 01 \mathrm{DI} 16 \times \mathrm{DC} 24 \mathrm{~V}$

The table below provides an overview of the parameters which can be set, with their default settings for the module 700-321-7BH01 DI 16 x DC 24 V .

The default settings are only effective if no parameterisation has been performed with STEP 7.

Parameter	Value Range	Default Settings	Parameter Type	Scope
Enable - Diagnostic interrupt - Hardware interrupt	Yes/no	No	Dynamic Dynamic	Module Module
Input delay/voltage type	$0,1 \mathrm{~ms} \mathrm{DC}$ $0,5 \mathrm{~ms} \mathrm{DC}$ 3 ms DC	3 ms DC	Static	Module
15 ms DC				
Diagnostics - Sensor supply missing	Yes/no	No	Static	Module
- Wire-break Trigger for hardware interrupt - Rising edge	Yes/no	nein	Static	Module
- Falling edge	Yes/no	No	Dynamic	Channel group
	No	Dynamic	Channel group	

Assignment of the encoder supplies to the channel groups

The two encoder supplies for the module serve as the power supplies for two channel groups:

- Inputs 0 to 7 ;
- Inputs 8 to 15 .

The diagnosis for this encoder supply is also parameterised in these channel groups.

Assigning interrupt parameters to channel groups

The table below shows the channels that can be combined to create a channel group if you would like to parameterize interrupt processing.

The channel group number is needed to set the parameters in the user program with an SFC.

Parameter	Can Be Set in Following Channel Groups	Channel Group Number
Hardware interrupt	0 and 1	0
for falling, rising or both	2 and 3	1
types of pulse	4 and 5	2
edges	6 and 7	3
	8 and 9	4
	10 and 11	5
	12 and 13	6
Diagnostic interrupt	14 and 15	0 to 7
for missing sensor supply	8 to 15	7
Diagnostic interrupt	0 and 1	-
for wire-break	2 and 3	-
		0
		1

Tolerances of the programmable input delays

Programmed Input delay	Tolerance
$0,1 \mathrm{~ms}$	60 to $140 \mu \mathrm{~s}$
$0,5 \mathrm{~ms}$	400 to 900 ms
3 ms (preset)	2,6 to $3,3 \mathrm{~ms}$
15 ms	12 to 15 ms
20 ms	17 to 23 ms

4.2.4.7 Behavior and Diagnostics of the Module 700-321-7BH01 DI $16 \times$ DC 24 V

Effect of operating and mode supply voltage on the input values
The input values of the Module 700-321-7BH01 DI $1 \times$ DC 24 V depend on the operating mode of the CPU and on the supply voltage of the module.

CPU Operating State		Power Supply L+ to Digital Module	Input Value of Digital Module
POWER ON	RUN	L+ exists	Process value
		L+ missing	0 signal
	STOP	L+ exists	L+ missing

4.2.4.8 Diagnostic Messages of the Module 700-321-7BH01 DI $16 \times$ DC 24 V

Diagnostics Message	LED	Scope of the Diagnostics	Parameters can be assigned
Sensor supply missing	SF	Channel group	Yes
Wire-break	SF	Channel group	Yes
Module not parameterized	SF	Channel group	Yes
External auxiliary supply missing	SF	Module	No
Internal auxiliary power missing	SF	Module	No
Fuse blown	SF	Module	No
Incorrect parameter on module	SF	Module	No
Hardware interrupt lost	SF	Module	No

If any errors are to be detected and displayed by way of parameterisable diagnostic messages, the digital module must be parameterised accordingly in STEP 7.

Behavior upon failure of the supply voltage

A failure of the supply voltage of the Module 700-321-7BH01 DI 16 x DC 24 V is always indicated by the SF LED on the module. In addition to the SF LED, this information is made available on the module.

The input value is initially held for 20 to 40 ms before the 0 signal is transferred to the CPU. Supply voltage dips $<20 \mathrm{~ms}$ do not modify the process value.

Failure of the supply voltage with redundant encoder incoming supply

If an external redundant power supply is provided for the encoder supply (Vs), no failure of the encoder supply is signalled in case of failure of the supply voltage L+. However, a failure of the internal and/or external auxiliary voltage and/or a tripped fuse will be signalled.

Short-circuit of sensor supply Vs

In case of a short-circuit of the encoder supply Vs, the relevant Vs LED goes out, irrespective of the parameterisation.

Causes of error and remedial measures

Diagnostics | Dossible Error Cause |
| :--- |
| Message |\quad Remedy

	Overload of sensor supply	Eliminate overload				
Lack of encoder supply	Short circuit of sensor supply to M	Eliminate short circuit		External auxiliary voltage missing	Power supply L+ to module missing	Feed supply L+
:---	:---	:---				
	Power supply L+ to module missing	Feed supply L+				
Internal auxiliary voltage missing	Led					

Fuse in module defective Replace module

Fuse blown Fuse in module defective Replace module

| | One parameter or the
 Wrong parameters
 in module | combination of
 parameters is not
 plausible |
| :--- | :--- | :--- |\quad Reassign module parameter

4.2.4.9 Interrupts of the Module 700-321-7BH01 DI 16 x DC 24 V

The interrupts are divided into:

- Diagnostic interrupt
- Hardware interrupt

Enabling interrupts

The interrupts are not preset - in other words, they are inhibited without appropriate parameter assignment. Assign parameters to the Interrupt Enable in STEP 7

Diagnostic interrupt

If diagnostic interrupts are enabled, then active error events (initial occurrence of the error) and departing error events (message after troubleshooting) are reported by means of an interrupt.
The CPU interrupts the execution of the user program and processes the diagnostic interrupt block (OB 82).
In the user program, you are able to call SFC 51 or SFC 59 in OB 82 to obtain more detailed diagnostic information from the module.
This diagnostic information is logical until such time as OB 82 is exited. When OB 82 is exited, the diagnostic interrupt is acknowledged on the module.

Hardware interrupt

The module 700-321-7BH01 DI 16 x DC 24 V can trigger a hardware interrupt for every channel group with a rising or falling edge, or both, of a signal status change.

Perform parameter assignment one channel group at a time. It can be modified at any time. In RUN mode using the user program.

Pending hardware interrupts trigger hardware interrupt processing in the CPU (OB 40). The CPU interrupts the execution of the user program or of the priority classes with low priority.

In the user-program of the hardware interrupt OB (OB 40) it can be established how the programmable logic controller has to react to should react to a flank-change. The process-alarm is acknowledged to with the abandonment of the Prozeßalarm-OBs on the module.

The module 700-321-7BH01 DI $16 \times$ DC 24 V can buffer one interrupt per channel. If no higher priority run-time levels are waiting to be processed, the buffered interrupts of all modules are serviced one after the other by the CPU in accordance with the order in which they occurred.

Hardware interrupt lost

A diagnostic interrupt "hardware interrupt lost" will be triggered, if an interrupt has been buffered for a channel and another interrupt occurs on that channel before it has been processed by the CPU .

Further interrupts on this channel are not acquired until processing of the interrupt buffered on this channel has been executed.

Interrupt-triggering channels

The channel triggered by the hardware interrupt is entered in the start information of the OB 40 in the OB40_POINT_ADDR variable. Fig. 4-7 shows the assignment of the bits to the local data double word 8 .

Byte	Variable	Data type		Description
$6 / 7$	OB40_MDL_ADDR	WORD	B\#16\#0	Address of the interrupt
from 8	OB40_POINT_ADDR	DWORD	See triggering module	Display of the interrupt
			Fig. 4-7	triggering inputs

Fig. 4-7:
Startinformation of OB 40

4.2.5 DEA DI $32 \times 120 \mathrm{~V}$ AC

Order number: 700-321-1EL00
The DI $32 \times 120 \mathrm{~V} \mathrm{AC}$ has the following features:

- 32 inputs, isolated in 4 groups of 8 inputs, isolated from the backplane bus in 4 groups
- Nominal input voltage 120 V AC
- Inputs suitable for switches
- Inputs suitable for $2 / 3$-wire proximity switches (AC)

Fig. 4-8 shows the block diagram of the DEA DI 16/DO $16 \times 24 \mathrm{~V}$ $\mathrm{DC} / 0.5 \mathrm{~A}$, followed by the technical data.

Fig. 4-8:
View of module and block diagram of DI $32 \times 120 \mathrm{~V}$ AC

Fig. 4-9:
Module view of DI 32×120 V AC

Technical specifications

4.2.6 DEA DI $16 \times 120 / 230 \mathrm{~V} \mathrm{AC}$

Order number: 700-321-1FH00
The DI $16 \times 120 / 230 \mathrm{~V}$ AC has the following features:

- 16 inputs, isolated in 4 groups of 4 inputs, isolated from the backplane bus in 4 groups
- Nominal input voltage $120 / 230$ V AC
- Inputs suitable for $2 / 3$-wire proximity switches (AC)

Fig. $4-10$ shows the block diagram of the DEA DI $16 \times 120 / 230 \mathrm{~V} \mathrm{AC}$, followed by the technical data.

Fig. 4-10:
View of module and block diagram of DI $16 \times 120 / 230$ V AC

Fig. 4-11:
Module view of DI $16 \times 120 / 230$ V AC

Status display: green

Technical specifications

4.3 Digital output modules

This section describes the following digital output modules:

- 700-322-1BL00 DO 32×24 V DC /0.5 A
- 700-322-1BH01 DO 16 x 24 V DC /0.5 A

4.3.1 DEA DO 32×24 V DC/0.5 A

Order number: 700-322-1BL00
The DO $32 \times 24 \mathrm{~V}$ DC/0.5 A has the following features:

- 32 outputs, isolated from the backplane bus
- Output current 0.5 A
- Nominal output voltage DC 24 V
- Suitable for solenoid valves, contactors, small-power motors, etc.

Fig. 4-12 shows the block diagram of the DEA DO $32 \times 24 \mathrm{~V}$ DC/ 0.5 A , followed by the technical data.

Fig. 4-12:
View of module and block diagram of DO 32×24 V DC/0.5 A

Technical data

Order number	700-322-1BL00
Number of outputs	32
Isolation (from backplane bus) in groups of	yes (via optocoupler) 8
Supply voltage $\mathrm{U}_{\mathrm{p}}, \mathrm{U}_{\mathrm{S}}$ - nominal value - ripple $V_{\text {Do }}$ - permissible range (with ripple) - value at $1<10 \mathrm{~ms}$	$\begin{aligned} & \text { DC } 24 \mathrm{~V} \\ & \max .3 .6 \mathrm{~V} \\ & 20 \ldots 30 \mathrm{~V} \\ & \max .50 \mathrm{~V} \end{aligned}$
Output current - nominal value - residual current	$\begin{aligned} & 0.5 \mathrm{~A} \\ & \max .0 .5 \mathrm{~mA} \end{aligned}$
Short circuit protection	electronic
Limitation of inductive interrupting voltage to	-48 V
Cable length unshielded Cable length shielded	max. 600 m max. 1000 m
Current consumption - internal - external without load	$\begin{aligned} & \text { typ. } 125 \mathrm{~mA} \\ & \max .200 \mathrm{~mA} \end{aligned}$
Power loss	typ. 6.8 W
- surrounding air temperature - temperature during transport and storage	$\begin{aligned} & 0{ }^{\circ} \mathrm{C} \ldots+60{ }^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \ldots+75{ }^{\circ} \mathrm{C} \end{aligned}$
Weight Dimensions W x H x D [mm] Front connector	$\begin{aligned} & 260 \mathrm{~g} \\ & 40 \mathrm{x} 125 \times 117 \\ & 40 \text {-way } \end{aligned}$

4.3.2 DEA DO $16 \times 24 \mathrm{~V}$ DC/0.5 A

Order number: 700-322-1BH01
The DO $16 \times 24 \mathrm{~V}$ DC/0.5 A has the following features:

- 16 outputs, isolated from the backplane bus
- Output current 0.5 A
- Nominal output voltage DC 24 V
- Suitable for solenoid valves, contactors, small-power motors, etc.

Fig. 4-13 shows the block diagram of the DEA DO $16 \times 24 \mathrm{~V}$ DC/0.5 A, followed by the technical data.

Technical data

Order number	700-322-1BH01
Number of outputs	16
Isolation (from backplane bus) in groups of	yes (via optocoupler) 8
Supply voltage U_{p}, U_{S} - nominal value - ripple $V_{\text {DD }}$ - permissible range (with ripple) - value at $1<10 \mathrm{~ms}$	$\begin{aligned} & \text { DC } 24 \mathrm{~V} \\ & \max .3 .6 \mathrm{~V} \\ & 20 \ldots 30 \mathrm{~V} \\ & \max .50 \mathrm{~V} \end{aligned}$
Output current - nominal value - residual current	$\begin{aligned} & 0.5 \mathrm{~A} \\ & \max .0 .5 \mathrm{~mA} \end{aligned}$
Short circuit protection	electronic
Limitation of inductive interrupting voltage to	-48 V
Cable length unshielded Cable length shielded	max. 600 m max. 1000 m
Current consumption - internal - external without load	typ. 100 mA max. 120 mA
Power loss	typ. 5 W
- surrounding air temperature - temperature during transport and storage	$\begin{aligned} & 0{ }^{\circ} \mathrm{C} \ldots+60{ }^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \ldots+75{ }^{\circ} \mathrm{C} \end{aligned}$
Weight Dimensions W x H x D [mm] Front connector	$\begin{aligned} & 200 \mathrm{~g} \\ & 40 \mathrm{x} 125 \times 117 \\ & 20 \text {-way } \end{aligned}$

4.3.3 DEA DO $8 \times 24 \mathrm{~V}$ DC/2.0 A

Order number: 700-322-1BF01
The DO $8 \times 24 \mathrm{~V} \mathrm{DC} / 2.0 \mathrm{~A}$ has the following features:

- 8 outputs, isolated from the backplane bus
- Output current 2.0 A
- Nominal output voltage 24 V DC
- Inputs suitable for solenoid valves, contactors, small-power motors, etc.

Fig. $4-14$ shows the block diagram of the DEA DO $8 \times 24 \mathrm{~V}$ DC/2.0 A, followed by the technical data.

Fig. 4-14:
View of module and block diagram of DEA DO 8×24 V DC/2.0 A

Technical data

Order number	700-322-1BF01
Number of Outputs	8
Isolation (from backplane bus) in groups of	yes (via optocoupler) 4
Supply voltage U_{p}, U_{S} - nominal value - ripple V_{DD} - permissible range (with ripple)	DC 24 V max. 3.6 V 20 ... 30 V
Short circuit protection Short circuit current - switched-mode Limitation of inductive interrupting voltage to	electronic typ. 12 A -23 V
Cable length unshielded Cable length shielded	max. 600 m max. 1000 m
Current consumption - internal - external without load	$\begin{aligned} & \text { typ. } 40 \mathrm{~mA} \\ & \text { max. } 60 \mathrm{~mA} \end{aligned}$
Power loss	typ. 6.8 W
- surrounding air temperature - temperature during transport and storage	$\begin{aligned} & 0{ }^{\circ} \mathrm{C} \ldots+60{ }^{\circ} \mathrm{C} \\ & -25{ }^{\circ} \mathrm{C} \ldots+75{ }^{\circ} \mathrm{C} \end{aligned}$
Weight Dimensions W x H x D [mm] Front connector	$\begin{aligned} & 190 \mathrm{~g} \\ & 40 \mathrm{x} 125 \times 117 \\ & 20 \text {-way } \end{aligned}$
Output voltage - at signal " 1 "	min. $\mathrm{L}+(-0.8 \mathrm{~V})$
Output current - at signal " 1 " rated value permitted range - at signal "0" (leakage current)	2 A 5 mA to 2.4 A max. 0.5 mA
Output delay (for resistive load) - from " 0 " to " 1 " - from " 1 " to " 0 "	max. $100 \mu \mathrm{~s}$ $\max .500 \mu \mathrm{~s}$
Load resistance range Lamp load	$\begin{aligned} & 12 \Omega \text { to } 4 \mathrm{k} \Omega \\ & \max .10 \mathrm{~W} \end{aligned}$
Parallel connection of 2 outputs - for redundant triggering of a load - to increase performance	possible (only outputs of the same group) not possible
Triggering a digital input	possible
Switch rate max. - for resistive load - Inductive loads according to IEC 947-5-1, DC 13 - For lamp load	max. 100 Hz max. 0.5 Hz $\max .10 \mathrm{~Hz}$

4.4 Digital input/output modules

This section describes the following digital input/output modules:

- 700-323-1BL00 DI 16/DO 16 x 24 V DC / 0.5 A
- 700-323-1BH01 DI 8/DO 8×24 V DC / 0.5 A

4.4.1 DEA DI 16/DO $16 \times 24 \mathrm{~V}$ DC/0.5 A

Order number: 700-323-1BL00
The DI 16/DO $16 \times 24 \mathrm{~V}$ DC/0.5 A has the following features:

- 16 inputs, isolated from the backplane bus
- 16 outputs, isolated from the backplane bus
- Nominal input voltage DC 24 V
- Nominal output voltage DC 24 V
- Inputs suitable for switches and 2-wire proximity switches (BEROs)
- Inputs suitable for solenoid valves, contactors, small-power motors, etc.
Fig. 4-15 shows the block diagram of the DEA DI 16/DO $16 \times 24 \mathrm{~V}$ DC/0.5 A, followed by the technical data.

Fig. 4-15:
View of module and block diagram of DI 16/DO $16 \times 24 \mathrm{~V}$ DC/0.5 A

Technical data

Order number	700-323-1BL00
Number of inputs	16
Isolation (from backplane bus) in groups of	yes (via optocoupler) 16
Input voltage - nominal value - for signal "0" - for signal "1"	$\begin{aligned} & \text { DC } 24 \mathrm{~V} \\ & -3 \ldots+5 \mathrm{~V} \\ & +13 \ldots+30 \mathrm{~V} \end{aligned}$
Input current - for signal "1"	typ. 7 mA
Delay time	typ. $1.2 \ldots 4.8 \mathrm{~ms}$
Connection of 2-wire initiator permissible quiescent current for signal " 0 "	yes max. 1.5 mA
Number of outputs	16
Isolation (from backplane bus) in groups of	yes (via optocoupler) 8
Supply voltage $\mathrm{U}_{\mathrm{p}}, \mathrm{U}_{\mathrm{s}}$ - nominal value - ripple V_{DD} - permissible range (with ripple) - value at $1<10 \mathrm{~ms}$	$\begin{aligned} & \text { DC } 24 \mathrm{~V} \\ & \max .3 .6 \mathrm{~V} \\ & 20 \ldots 30 \mathrm{~V} \\ & \max .50 \mathrm{~V} \end{aligned}$
Output current - nominal value - residual current	$\begin{aligned} & 0.5 \mathrm{~A} \\ & \max .0 .5 \mathrm{~mA} \end{aligned}$
Short circuit protection Limitation of inductive interrupting voltage to	electronic -48 V
Cable length unshielded Cable length shielded	max. 600 m max. 1000 m
Current consumption - internal - external without load	$\begin{aligned} & \text { typ. } 90 \mathrm{~mA} \\ & \text { max. } 120 \mathrm{~mA} \end{aligned}$
Power loss	typ. 6.8 W
- surrounding air temperature - temperature during transport and storage	$\begin{aligned} & 0^{\circ} \mathrm{C} \ldots+60{ }^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \ldots+75{ }^{\circ} \mathrm{C} \end{aligned}$
Weight Dimensions W x H x D [mm] Front connector	$\begin{aligned} & 260 \mathrm{~g} \\ & 40 \times 125 \times 117 \\ & 40 \text {-way } \end{aligned}$

4.4.2 DEA DI 8/DO $8 \times 24 \mathrm{~V}$ DC/0.5 A

Order number: 700-323-1BH01

The DI 8/DO $8 \times 24 \mathrm{~V}$ DC/0.5 A has the following features:

- 8 inputs, isolated from the backplane bus
- 8 outputs, isolated from the backplane bus
- Nominal input voltage 24 V DC
- Nominal output voltage 24 V DC
- Inputs suitable for switches and 2-wire proximity switches (BEROs)
- Inputs suitable for solenoid valves, contactors, small-power motors, etc.

Fig. $4-16$ shows the block diagram of the DEA DI 8/DO $8 \times 24 \mathrm{~V}$ DC/0.5 A, followed by the technical data.

Technical data

Order number	700-323-1BH01
Number of inputs	8
Isolation (from backplane bus) in groups of	yes (via optocoupler) 8
Input voltage - nominal value - for signal "0" - for signal "1"	$\begin{aligned} & \text { DC } 24 \mathrm{~V} \\ & -3 \ldots+5 \mathrm{~V} \\ & +13 \ldots+30 \mathrm{~V} \end{aligned}$
Input current - for signal "1"	typ. 7 mA
Delay time	typ. $1.2 \ldots 4.8 \mathrm{~ms}$
Connection of 2-wire initiator - permissible quiescent current for signal "0"	yes max. 1.5 mA
Number of outputs	8
Isolation (from backplane bus) in groups of	yes (via optocoupler) 8
Supply voltage $\mathrm{U}_{\mathrm{p}}, \mathrm{U}_{\mathrm{s}}$ - nominal value - ripple V_{bD} - permissible range (with ripple) - value at $1<10 \mathrm{~ms}$	$\begin{aligned} & \mathrm{DC} 24 \mathrm{~V} \\ & \max .3 .6 \mathrm{~V} \\ & 20 \ldots 30 \mathrm{~V} \\ & \max .50 \mathrm{~V} \end{aligned}$
Output current - nominal value - residual current	$\begin{aligned} & 0.5 \mathrm{~A} \\ & \max .0 .5 \mathrm{~mA} \end{aligned}$
Short circuit protection Limitation of inductive interrupting voltage to	electronic -48 V
Cable length unshielded Cable length shielded	max. 600 m max. 1000 m
Current consumption - internal - external without load	typ. 55 mA max. 60 mA
Power loss	typ. 3.5 W
- surrounding air temperature - temperature during transport and storage	$\begin{aligned} & 0{ }^{\circ} \mathrm{C} \ldots+60{ }^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \ldots+75{ }^{\circ} \mathrm{C} \end{aligned}$
Weight Dimensions W x H x D [mm] Front connector	$\begin{aligned} & 200 \mathrm{~g} \\ & 40 \times 125 \times 117 \\ & \text { 20-way } \end{aligned}$

4.5 Relay output modules

This section deals with the following relay output modules:

- 700-322-1HF10 8 outputs relay 5 A
- 700-322-1HF20 8 outputs relay 5 A with suppressor
- 700-322-1HH01 16 outputs relay 2 A
- 700-322-1HF01 8 outputs relay 2 A
- 700-322-1HF30 16 outputs relay 0.5 A bistable

4.5.1 DEA DO $8 \times$ ReI. V AC 230/5 A

Order number: 700-322-1HF10
The DO $8230 \mathrm{~V} \mathrm{AC} / 5 \mathrm{~A}$ has the following properties:

- 8 outputs, floating in groups of 1
- Load voltage DC 24 V to 120 V ; AC 48 V to 230 V
- Suitable for AC/DC solenoid valves, contactors, motor starters, small-power motors, and indicator lights

Fig. 4-17 shows the block diagram of the DEA DO 8 relays $230 \mathrm{~V} / 5 \mathrm{~A} \mathrm{AC}$, followed by the technical specifications.

Fig. 4-17:
View of module and block diagram of DO $8 \times 230 \mathrm{~V}$ AC/5 A

[^0]
Technical specifications

Order number
Number of outputs
Isolation from backplane bus
Supply voltage of the relays L+
Contact voltages

Continuous thermal current
Horizontal mounting up to $+30^{\circ} \mathrm{C}$ up to $+60^{\circ} \mathrm{C}$
Vertical mounting up to $+40^{\circ} \mathrm{C}$
Minimum load voltage/load current
Operation of a digital input
Short-circuit current acc. to IEC 947-5-1 with circuit-breaker with characteristic B

Contact connection (internal)
Parallel connection of 2 outputs

- for redundant operation of the load
- for power increase

Operation of a digital input
Switching frequency

- mechanical
- with ohmic load
- with inductive load, acc. to IEC947-5-1, DC13/AC15
- with lamp load

Cable length unshielded
Cable length shielded
Current consumption

- internal
- external

Power loss
Supports clocked operation
Status display
Alarm
Diagnostic functions

- surrounding air temperature
- Transportation and storage temperature

Dimensions W x H x D [mm]
Weight
Front connector

700-322-1HF10

8

Yes (optocoupler)
DC 24 V
DC 24 to 120 V
AC 48 to 230 V
5 A per group
max. 8 A
max. 5 A
max. 5 A
$10 \mathrm{~V} / 5 \mathrm{~mA}$
Possible
$\cos \varphi$ 1.0: $\quad 600 \mathrm{~A}$
$\cos \varphi$ 0.5...0.7: 900 A
with fuse
Diazed 8 A: 1000 A
none

Possible
Not possible
Possible
max. 10 Hz
max. 2 Hz
max. 0.5 Hz
max. 2 Hz
max. 600 m
max. 1000 m
typ. 40 mA
max. 125 mA
typ. 4.2 W
no
green LED per channel
no
none
$0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$40 \times 125 \times 120$
approx. 350 g
40-way

Permissible potential difference

- between $\mathrm{GND}_{\text {internal }}$ and supply voltage of the

DC $75 \mathrm{~V} / \mathrm{AC} 60 \mathrm{~V}$ relays

- between $\mathrm{GND}_{\text {intermal }}$ or supply voltage of the relays and the outputs
- between the outputs of different groups

AC 250 V
AC 500 V

Insulation test

- between $\mathrm{GND}_{\text {internal }}$ and supply voltage of the relays
- between $\mathrm{GND}_{\text {internal }}$ or supply voltage of the relays and the outputs
- between the outputs of different groups

Make/break capacity and life of contacts
Voltage/current

- for ohmic load

AC 500 V
AC 1500 V

AC 1500 V

Number of switching
cycles, typical value [mill.]

-

Relay contact life can be extended using an external suppressor circuit.

Lamp load AC 230 V	Power	Number of switching cycles Typical value
	1000 W	25,000
Low-energy lamps/	1500 W	10,000
fluorescent lamps with electronic ballast	$10 * 58 \mathrm{~W}$	25,000
Fluorescent lamps with conventional correction Fluorescent lamps uncorrected	$10 * 58 \mathrm{~W}$	25,000

Operation with safety extra-low voltage

If the $322-1 \mathrm{HF} 10$ relay output module is used with isolated safety extra-low voltage, the following special aspect must be observed:
If a terminal is operated with isolated safety extra-low voltage, the (horizontally) adjacent terminal must only be operated with a nominal voltage of max. DC 120 V .

When operated with a voltage above DC 120 V , the clearances and creepage distances of the 40-way front connectors do not comply with the SELV requirements for safe electrical isolation.

If a terminal is operated with safety extra-low voltage, the horizontally adjacent terminal must be operated with no more than DC 120 V ! Example:

Output 0
Output 4

4.5.2 DEA DO $8 \times$ Rel. 230 V AC/5 A with suppressor

Order number: 700-322-1HF20
The DO 8 x rel. $230 \mathrm{~V} \mathrm{AC/5} \mathrm{~A} \mathrm{with} \mathrm{suppressor} \mathrm{has} \mathrm{the} \mathrm{following}$ properties:

- 8 outputs, floating in groups of 1
- Load voltage DC 24 V to 120 V ; AC 24 V to 230 V
- Suitable for AC/DC solenoid valves, contactors, motor starters, small-power motors and indicator lights
- RC snubbers can be connected via jumper SJ to protect the contacts

Fig. 4-18 shows the block diagram of the DEA DO 8 x relay 230 V $\mathrm{AC} / 5 \mathrm{~A}$, followed by the technical specifications.

H

Relay contact life can be extended using the internal suppressor circuit - insert jumper "SJ"

$!$

Residual current of the $R C$ snubber (with jumper SJ) can cause incorrect signal states on connection of an IEC type 1 input!

Technical specifications

Order number

700-322-1HF20

Number of outputs

Isolation from backplane bus
Supply voltage of the relays L+
Contact voltages

Continuous thermal current
Horizontal mounting up to $+30^{\circ} \mathrm{C}$ up to $+60^{\circ} \mathrm{C}$
Vertical mounting up to $+40^{\circ} \mathrm{C}$
Minimum load voltage/load current without jumper "SJ"

Residual current with AC load voltage

- with jumper "SJ"
- without jumper "SJ"

Operation of a digital input
Short-circuit current acc. to IEC 947-5-1 with circuit-breaker with characteristic B

Contact connection (internal)

Parallel connection of 2 outputs

- for redundant operation of the load
- for power increase

Operation of a digital input
Switching frequency

- mechanical
- with ohmic load
- with inductive load, acc. to IEC947-5-1, DC13/AC15
- with lamp load

Cable length unshielded
Cable length shielded
Current consumption

- internal
- extern

Power loss
Supports clocked operation
Status display
Alarm
Diagnostic functions

- surrounding air temperature
- Transportation and storage temperature
typ. 40 mA

8

Yes (optocoupler)
DC 24 V
DC 24 to 120 V
AC 48 to 230 V

5 A per group
max. 8 A
$\max .5 \mathrm{~A}$
$\max .5 \mathrm{~A}$
$10 \mathrm{~V} / 5 \mathrm{~mA}$
11.5 mA

0 mA

Possible
$\cos \varphi 1.0: \quad 600 \mathrm{~A}$
$\cos \varphi$ 0.5...0.7: 900 A
with fuse
Diazed 8 A: 1000 A
RC snubber 330Ω, $0.1 \mu \mathrm{~F}$

Possible
Not possible
Possible
max. 10 Hz
max. 2 Hz
max. 0.5 Hz
max. 2 Hz
max. 600 m
max. 1000 m
max. 125 mA
typ. 4.2 W
no
green LED per channel
no
none
$0{ }^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

Dimensions W x H x D [mm]
Weight
Front connector

Permissible potential difference

- between $\mathrm{GND}_{\text {internal }}$ and supply voltage of the relays
- between $G N D_{\text {internal }}$ or supply voltage of the relays and the outputs
- between the outputs of different groups

Insulation test

- between $\mathrm{GND}_{\text {internal }}$ and supply voltage of the relays
- between $\mathrm{GND}_{\text {internal }}$ or supply voltage of the relays and the outputs
- between the outputs of different groups

Make/break capacity and life of contacts

- for ohmic load

Voltage/current
$40 \times 125 \times 120$
approx. 360 g
40-way

DC 75 V / AC 60 V
AC 250 V

AC 500 V

AC 500 V
AC 1500 V
AC 1500 V

Number of switching cycles, typical value [mill.]

DC 24 V	8.0 A	0.1
	4.0 A	0.3
	2.0 A	0.7
	0.5 A	4.0
DC 60 V	0.5 A	4.0
DC 120 V	0.2 A	1.6
AC 48 V	8.0 A	0.1
	2.0 A	1.6
AC 60 V	8.0 A	0.1
	2.0 A	1.2
AC 120 V	8.0 A	0.1
	4.0 A	0.3
	2.0 A	0.5
	1.0 A	0.7
AC 230 V	0.5 A	1.5
	8.0 A	0.1
	2.0 A	0.3
	1.0 A	0.5
	0.5 A	0.7
	1.5	

- for inductive load acc. to IEC 947-5-1 DC13/AC15

DC 24 V	2.0 A	0.3
	1.0 A	0.5
	0.5 A	1.0
DC 60 V	0.5 A	0.5
	0.3 A	1.0
DC 120 V	0.2 A	0.5
AC 48 V	3.0 A	0.5
	1.5 A	1.0
AC 60 V	3.0 A	0.3
	1.5 A	1.0

AC 120 V	3.0 A	0.2
	2.0 A	0.3
	1.0 A	0.7
	0.5 A	2.0
AC 230 V	3.0 A	0.1
	2.0 A	0.3
	1.0 A	0.7
	0.5 A	2.0

Lamp load AC 230 V	Power	Number of switching cycles Typical value
	1000 W	25,000
Low-energy lamps/	1500 W	10,000
fluorescent lamps	$10 * 58 \mathrm{~W}$	25,000
with electronic ballast Fluorescent lamps with conventional correction	$1 * 58 \mathrm{~W}$	25,000
Fluorescent lamps uncorrected	$10 * 58 \mathrm{~W}$	25,000

Operation with safety extra-low voltage

If the 322-1HF20 relay output module is used with isolated safety extra-low voltage, the following special aspect must be observed:
If a terminal is operated with isolated safety extra-low voltage, the (horizontally) adjacent terminal must only be operated with a nominal voltage of max. DC 120 V .
When operated with a voltage above DC 120 V , the clearances and creepage distances of the 40 -way front connectors do not comply with the SELV requirements for safe electrical isolation.

If a terminal is operated with safety extra-low voltage, the horizontally adjacent terminal must be operated with no more than DC 120 V ! Example:

Output 0
Output 4

4.5.3 DEA DO $16 \times$ Rel. 230 V AC/2 A

Order number: 700-322-1HH01
The DO 16 x rel. $230 \mathrm{~V} \mathrm{AC} / 2 \mathrm{~A}$ has the following properties:

- 16 Outputs, floating in groups of 2
- Load voltage DC 24 V to 120 V ; AC 48 V to 230 V
- Suitable for AC/DC solenoid valves, contactors, motor starters, small-power motors and indicator lights

Fig. 4-19 shows the block diagram of the DEA DO 16 x Relay 230 V $\mathrm{AC} / 2 \mathrm{~A}$, followed by the technical specifications.

Fig. 4-19:
View of module and block diagram of DO $16 \times 230 \mathrm{~V} A C / 2 \mathrm{~A}$

I

Relay contact life can be extended using an external suppressor circuit.

Technical specifications

Order number

700-322-1HH01
Number of outputs 16
Isolation from backplane bus
Supply voltage of the relays L+
Contact voltages

Continuous thermal current
Operation of a digital input
Short-circuit current acc. to IEC 947-5-1 with circuit-breaker with characteristic B

Contact connection (internal)
Parallel connection of 2 outputs

- for redundant operation of the load
- for power increase

Operation of a digital input
Switching frequency

- mechanical
- with ohmic load
- with inductive load, acc. to IEC947-5-1, DC13/AC15
- with lamp load

Cable length unshielded
Cable length shielded
Current consumption

- internal
- extern

Power loss
Supports clocked operation
Status display
Alarm
Diagnostic functions

- surrounding air temperature
- Transportation and storage temperature

Dimensions W x H x D [mm]
Weight
Front connector

Yes (optocoupler)
DC 24 V
DC 24 to 120 V
AC 48 to 230 V
max. 2 A per output
max. 8 A per group
Possible
200 A, with circuitbreaker B10/B16
none

Possible
only outputs of the same group!
Not possible
Possible
$\max .10 \mathrm{~Hz}$
max. 1 Hz
max. 0.5 Hz
max. 1 Hz
max. 600 m
max. 1000 m
typ. 70 mA
max. 250 mA
typ. 4.5 W
no
green LED per channel
no
none
$0{ }^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$40 \times 125 \times 117$
approx. 240 g
20-way

1

Relay contact life can be extended using an external suppressor circuit.

Permissible potential difference

- between $\mathrm{GND}_{\text {internal }}$ and supply voltage of the relays
- between $\mathrm{GND}_{\text {intermal }}$ or supply voltage of the relays and the outputs
- between the outputs of different groups

AC 500 V

Insulation test

- between $\mathrm{GND}_{\text {internal }}$ and supply voltage of the relays
- between $G N D_{\text {internal }}$ or supply voltage of the $A C 1500 \mathrm{~V}$ relays and the outputs
- between the outputs of different groups

Make/break capacity and life of contacts
Voltage/current

- for ohmic load

- for	DC 24 V	2.0 A	0.1
		1.0 A	0.2
		0.5 A	1.0
	DC 60 V	0.5 A	0.2
	DC 120 V	0.2 A	0.6
	AC 24 V	1.5 A	1.5
	AC 48 V	1.5 A	1.5
	AC 60 V	1.5 A	1.5
	AC 120 V	2.0 A	1.0
		1.0 A	1.5
		0.5 A	2.0
	AC 230 V	2.0 A	1.0
		1.0 A	1.5
		0.5 A	2.0
- for inductive load acc. to	C 947-5-1	DC13/A	C15
	DC 24 V	2.0 A	0.05
		1.0 A	0.1
		0.5 A	0.5
	DC 60 V	0.5 A	0.1
	DC 120 V	0.2 A	0.5
	AC 24 V	1.5 A	1.0
	AC 48 V	1.5 A	1.0
	AC 60 V	1.5 A	1.0
	AC 120 V	2.0 A	0.7
		1.0 A	1.0
		0.5 A	1.5
	AC 230 V	2.0 A	0.7
		1.0 A	1.0
		0.5 A	1.5
Lamp load		Power	Number of switching cycles Typical value
	AC 230 V	50 W	25,000
	DC 24	V 5 W	10,000
Motor starter acc. to NEMA			max. size 5
Operation with safety extra-low voltage			
The 700-322-1HH01 module can be used with safety extra-low voltage without any restrictions.			

4.5.4 DEA DO $8 \times$ Rel. 230 V AC/2 A

Order number: 700-322-1HF01
The DO 8 x rel. $230 \mathrm{~V} \mathrm{AC} / 2 \mathrm{~A}$ has the following properties:

- 8 Outputs, floating in groups of 2
- Load voltage DC 24 V to 120 V ; AC 48 V to 230 V
- Suitable for $\mathrm{AC} / \mathrm{DC}$ solenoid valves, contactors, motor starters, small-power motors and indicator lights

Fig. 4-20 shows the block diagram of the DEA DO 8 x relay 230 V $\mathrm{AC} / 2 \mathrm{~A}$, followed by the technical specifications.

Fig. 4-20:
View of module and block diagram of $D O 8 \times 230 V A C / 2 A$

Technical specifications

Order number
Number of outputs
Isolation from backplane bus
Supply voltage of the relays L+
Contact voltages

700-322-1HF01

8
Yes (optocoupler)
DC 24 V

DC 24 to 120 V
AC 48 to 230 V

Continuous thermal current

Operation of a digital input

Short-circuit current acc. to IEC 947-5-1 with circuit-breaker with characteristic B

Contact connection (internal)

Parallel connection of 2 outputs

- for redundant operation of the load
- for power increase

Operation of a digital input
Switching frequency

- mechanical
- with ohmic load
- with inductive load, acc. to IEC947-5-1, DC13/AC15
- with lamp load

Cable length unshielded
Cable length shielded
Current consumption

- internal
- extern

Power loss

Supports clocked operation
Status display
Alarm
Diagnostic functions

- surrounding air temperature
- Transportation and storage temperature

Dimensions W x H x D [mm]
Weight
Front connector

Permissible potential difference

- between $\mathrm{GND}_{\text {internal }}$ and supply voltage of the relays
- between $G^{\text {D }} D_{\text {internal }}$ or supply voltage of the relays and the outputs
- between the outputs of different groups

Insulation test

- between $\mathrm{GND}_{\text {internal }}$ and supply voltage of the relays
- between $\mathrm{GND}_{\text {internal }}$ or supply voltage of the relays and the outputs
- between the outputs of different groups
max. 3 A per output max. 4 A per group
Possible
$\cos \varphi 1.0: \quad 600 \mathrm{~A}$
$\cos \varphi$ 0.5...0.7: 900 A
with fuse
Diazed 8 A: 1000 A
Varistor K275

Possible
only outputs of the
same group!
Not possible
Possible
max. 10 Hz
max. 2 Hz
max. 0.5 Hz
max. 2 Hz
max. 600 m
max. 1000 m
typ. 40 mA
max. 160 mA
typ. 3.2 W
no
green LED per channel
no
none
$0^{\circ} \mathrm{C}$ to $+60{ }^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+75{ }^{\circ} \mathrm{C}$
$40 \times 125 \times 117$
approx. 240 g
20-way

DC 75 V / AC 60 V
AC 230 V

AC 500 V

AC 500 V

AC 1500 V

AC 1500 V

Make/break capacity and life of contacts					
\square Relay contact life can be extended using an external suppressor circuit.		Voltage/current		Number of switching cycles, typical value [mill.]	
Relay contact life can be extended using an external suppressor circuit.	- for ohmic load	DC 24 V	2.0 A	0.7	
			1.0 A	1.6	
			0.5 A	4.0	
		DC 60 V	0.5 A	1.6	
		DC 120 V	0.2 A	1.6	
		AC 48 V	2.0 A	1.6	
		6 AC 0 V	2.0 A	1.2	
		AC 120 V	2.0 A	0.5	
			1.0 A	0.7	
			0.5 A	1.5	
		AC 230 V	2.0 A	0.5	
			1.0 A	0.7	
		- for inductive load acc. to IEC 947-5-1 $\frac{0.5 \mathrm{DC13/AC15}}{}{ }^{\text {d }}$			
		DC 24 V	2.0 A	0.3	
			1.0 A	0.5	
			0.5 A	1.0	
		DC 60 V	0.5 A	0.5	
		DC 120 V	0.2 A	0.3	
		AC 48 V	1.5 A	1.0	
		AC 60 V	1.5 A	1.0	
		AC 120 V	2.0 A	0.2	
			1.0 A	0.7	
			0.7 A	1.0	
			0.5 A	2.0	
		AC 230 V	2.0 A	0.3	
			1.0 A	0.7	
			0.5 A	2.0	
	Lamp load AC 230 V		Power	Number of switching cycles Typical value	
			000 W	25,000	
			500 W	10,000	
	Low-energy lamps/		x 58 W	25,000	
	fluorescent lamps with electronic ballast				
	Fluorescent lamps with conventional correction		x 58 W	25,000	
	Fluorescent lamps uncorrected		x 58 W	25,000	

[^1]
Operation with safety extra-low voltage

The 700-322-1HF01 module can be used with safety extra-low voltage without any restrictions.

4.5.5 DEA DO $16 \times$ Rel. DC 60 V/0.5 A bistable

Order number 700-322-1HF30
The DO 16 x Rel. DC $60 \mathrm{~V} / 0.5$ A bistable has the following features:

- 16 outputs, isolated in groups of 1 or more
- Load voltage DC to 60 V , AC to 50 V
- suitable for AC/DC solenoid valves, contactors, motor starters, low-power motors and signal lamps
- the last switch state is preserved in the event of a failure

Fig. 4-21 shows the block diagram of the DEA DO $16 \times$ Rel. DC $60 \mathrm{~V} / 0.5$ A bistable relay, followed by the technical specifications.

	$v a u-\omega$ N-0
	v a u $-\omega$ - -
z~ D(0) 	 N N N N N N N N N N N N

Fig. 4-21:
Assembly view and block diagram of the DO 16 x Rel. DC 60 V/0.5 A bistable

As the varistor becomes low impedance during surges, a suitable safety fuse is required on the inputs.

Technical data

Order number
Number of outputs 16
Isolation from backplane bus
Relay supply voltage L+
Switching voltage

Continuous thermal current
can be used to control
Short circuit current per IEC 947-5-1 with line safety switch with tripping characteristic B

Contact switching (internal)

Parallel switching of 2 outputs

- for redundant control of load
- For increased performance

Switching frequency

- mechanical:
- with resistive load

Energisation of the solenoid to ensure relay switching

Cable length unshielded
Cable length shielded
Power consumption

- internal
- external

Power loss
Supports isochronous operation
Status indicator
alarm
Diagnostic functions

- Ambient temperature
- Temperature during transport and storage

Dimensions W x H x D [mm]
Weight
Front connector

700-322-1HF30
yes (via optocoupler)
24 V DC

DC to 60 V max.
AC to 50 V max.
max. 0.5 A per output
digital inputs
$\cos \varphi 1.0: \quad 600 \mathrm{~A}$
$\cos \varphi$ 0.5...0.7: 900 A
with safety fuse
Diazed 8 A: 1000 A
Varistor
SIOV-CU4032-K50G
not allowed
not allowed
max. 180 Hz
$\max .20 \mathrm{~Hz}$
$\min .10 \mathrm{~ms}$
max. 600 m
max. 1000 m
max. 150 mA
max. 500 mA
typically 6.5 W
no
green LED per channel
no
none
$0{ }^{\circ} \mathrm{C} \ldots 60^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C} \ldots 75^{\circ} \mathrm{C}$
$40 \times 125 \times 117$
approx.:320 g
40-pin

Rated potential difference

- between $\mathrm{M}_{\text {intern }}$ and relay supply voltage

DC $75 \mathrm{~V} / \mathrm{AC} 60 \mathrm{~V}$

- between $\mathrm{M}_{\text {intern }}$ or relay supply voltage and the

AC 1000 V outputs

- between outputs in different groups

Switching capacity and lifetime of contacts

	voltage/current	Number of switching cycles, typical (million)
- for resistive load	DC $24 \mathrm{~V} / 0.5 \mathrm{~A}$	0.7

- for resistive load

DC $24 \mathrm{~V} / 0.5 \mathrm{~A}$
0.7

4.5.5.1 Parameter Configuration

Relay module DO 16 x Rel. DC 60 V/0.5 A bistable needs to be configured in the hardware configuration in STEP 7 as DO $32 \times$ DC $24 \mathrm{~V} / 0.5 \mathrm{~A}$ with order number 6ES7 322-1BL00-0AA0.

4.5.5.2 Activating the Relays

The state of each relay is controlled using 2 bits in the output double word. The even bits in the output double word are used to turn on the relays, while the odd bits are used to turn them off.

In order to ensure that the relays will switch states safely and reliably, every relevant bit must be "high" for the minimum time specified in the table. Due to the current draw that would result, it is not recommended to keep any bits "high" permanently.
Simultaneously switching the "ON" bits and the "OFF" bits for a relay will create an illegal state - do not do this! When a relay is in this illegal state, it will be impossible to know whether the relay will switch states or not.

Relays and Their Corresponding Control Bits

Relay	Byte of Outputs	Bit ON	Bit OFF
0	0	0	1
1	0	2	3
2	0	4	5
3	0	6	7
4	1	0	1
5	1	2	3
6	1	4	5
7	2	6	7
8	2	2	1
9	2	4	3
10	2	6	5
11	3	0	7
12	3	2	1
13	3	4	3
14	3	6	7
15		2	

Control Bits for Relays 0 through 7 on the Variable Table

Control Bits for Relays 8 through 15 on the Variable Table

4.6 Other modules

4.6.1 Dummy Module DM 370

Order number: 700-370-0AA01 20-pin 700-370-0AL01 40-pin

The dummy module DM 370 reserves a slot for a module not parameterised. It can be used as a dummy for:

- interface modules, without reserving address space
- non-parameterised signal modules, with reserved address space
- modules that occupy 2 slots, with reserved address space

When replacing the dummy module with another module from the S7-300*, the mechanical design and the address assignment or address allocation remain unchanged for the complete device.

Configuring with STEP 7

When working with STEP 7, the dummy module DM 370 must only be configured if the module is to reserve a slot for a parameterised signal module. If the module is to reserve a slot for an interface module, the module DM 370 need not be configured.

Modules occupying 2 slots

For modules occupying 2 slots, it is imperative to plug 2 dummy modules. In this case, only the dummy module plugged into slot " x " reserves the address space, but not the module plugged into slot "x + 1" (see table).

Max. 8 modules (SM/FM/CP) may be plugged into one subrack. If, however, 2 dummy modules reserve a slot for a module 80 mm in width, 7 further modules (SM/FM/CP) may nevertheless be plugged, since the dummy module only occupies the address space for 1 module.

Switch Position	Function	Application
NA	\square	The dummy module reserves one slot. The module will not be configured and does not occupy any address space.
NA	• Without active backplane bus: A slot is reserved only physically, with electrical connection to the backplane bus. - With active backplane bus: no	
A	The dummy module reserves one slot. The module must be configured and occupies 1 byte address space (with specification from the system outside the process image).	• A slot with address is reserved.

Fig. 4-22:
Module view of the dummy module front connector 20-way

Fig. 4-23:
Module view of the dummy module front connector 40-way

Technical specifications

Order number Front connector 20-way Front connector 40-way	700-370-0AA01 $700-370-0 A L 01$
Current consumption (from backplane bus)	ca. 5 mA
Power loss	typ. 0.03 W
Dimensions W x H x D [mm]	$40 \times 125 \times 117$
Weight	ca. 180 g
- surrounding air temperature	$0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
- Transportation and storage temperature	$-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

$!$

If any 8-bit module is used, all 9-bit modules connected to the backplane bus will revert to using the 8-bit transmission method.

Meaning of the 8/9-bit display of the dummy module

There are two different methods for transmission of the data along the S7 300* backplane bus:

- Without parity bit Only the data bytes (8 bits) are transmitted. This method is obsolete; errors in the data transmission cannot be recognised, and errors may occur in the I/O modules.
- With parity bit

This newer, better method transmits a parity bit (9 bits per byte) in addition to the useful data. Thus, transmission errors can be recognised and errors can be avoided.
The CPUs are able to use both transmission methods. All I/O modules that handle the 9-bit transmission method can additionally switch back to the 8-bit method. This happens whenever one or several modules using the obsolete, less reliable 8 -bit method are plugged into the system.
The 8/9-bit LEDs indicate the transmission method currently used by the entire system.
The 9-bit method was introduced shortly after introduction of the S7-300* to the market. For reasons of downwards compatibility, however, new CPUs are still also able to use the 8 -bit method.

Systeme Helmholz modules generally use the more reliable 9-bit transmission method.

There are, however, modules that only use the 8 -bit method. To ensure a reliable data transmission on the backplane bus and to avoid errors in the I/O modules, we recommend not using such modules any longer. The presence of 8 -bit modules can be recognised from the red LED on the dummy module, see Fig 4-22 and Fig. 4-23.

5 Ordering data

Sectional rail

Sectional rail length $160 \mathrm{~mm} \quad 700-390-1 \mathrm{AB} 60$
Sectional rail length 482 mm
Sectional rail length 530 mm
Sectional rail length 830 mm
700-390-1AE80
700-390-1AF30
700-390-1AJ30
Sectional rail length 2000 mm
700-390-1BC00

Front connector
40-way front connector with screw-type
700-392-1AM01
terminal
20-way front connector with screw-type
700-392-1AJ10
terminal
40-way front connector with spring-type
700-392-1BM01 terminal
20-way front connector with spring-type
700-392-1BJ01
terminal
40-way front connector with EasyConnect
700-392-1AM10

Digital input modules
DI 32×24 V DC
700-321-1BL00
DI $16 \times 24 \mathrm{~V}$ DC
700-321-1BH02
DI $16 \times 24 \mathrm{~V}$ DC Source Input
700-321-1BH50
DI 16×24 V DC with Hardware and Diagnostic
700-321-7BH01
Interrupts
DI $32 \times 120 \mathrm{~V}$ AC
700-321-1EL00
DI 16 x 120/230 V AC
700-321-1FH00

Digital output modules
DO $32 \times 24 \mathrm{~V}$ DC/0.5 A
700-322-1BL00
DO $16 \times 24 \mathrm{~V}$ DC/0.5 A
700-322-1BH01
DO 8 x 24 V DC/2.0 A
700-322-1BF01
Digital input/output modules
DI 16/DO $16 \times 24 \mathrm{~V}$ DC/0.5 A
700-323-1BL00
DI 8/DO 8 x 24 V DC/0.5 V
700-323-1BH01
Relay output modules
DO $8 \times$ Rel. AC $230 \mathrm{~V} / 5 \mathrm{~A}$
700-322-1HF10
DO $8 \times$ Rel. AC $230 \mathrm{~V} / 5$ A with suppressor
700-322-1HF20
DO $8 \square \mathrm{x}$ Rel. AC $230 \mathrm{~V} / 2 \mathrm{~A}$
700-322-1HF01
DO 16 x Rel. AC $230 \mathrm{~V} / 2 \mathrm{~A}$
700-322-1HH01
DO 16 x Rel. DC 60 V/0.5 A bistable
700-322-1HF30

Other modules
Dummy Module 20-pin 700-370-0AA01
Dummy Module 40-pin 700-370-0AL01

[^0]: 1* Further wiring of the contact supply:
 Total current $\leq 8 \mathrm{~A}$ at surrounding air temperature $\leq 30^{\circ} \mathrm{C}$ Total current $\leq 5 \mathrm{~A}$ at surrounding air temperature $\leq 60^{\circ} \mathrm{C}$

[^1]: !
 Operation with safety extra-low voltage

